





# Nonlinear Scalarization of Schwarzschild Black Hole in Scalar-Torsion Teleparallel Gravity

10.1103/PhysRevD.111.044064

P. González, E. Papantonopoulos, **Joaquín Robledo**<sup>1</sup> and Y. Vásquez <sup>1</sup>PhD Student at Universidad de Tarapacá, Universidad de La Serena, Universidad de Valparaíso

Encuentro COSMOCONCE y PARTÍCULAS 2025, Concepción, November 5-7 2025

## Outline

- 1. Motivation
- 2. Teleparallel Equivalent of General Relativity
- 3. Model of Nonlinear Scalarization
- 4. Scalarized Black Hole Solutions
- 5. Thermodynamics
- 6. Final Remarks

## Beyond the spontaneous scalarization: New fully nonlinear dynamical mechanism for formation of scalarized black holes

Daniela D. Doneva<sup>1,2,\*</sup> and Stoytcho S. Yazadjiev<sup>1,3,4,†</sup>

They consider scalar-Gauss-Bonnet theories with coupling functions that do not allow for a tachyonic instability to occurs, i.e. sGB theories which do not exhibit spontaneous scalarization.

$$I = rac{1}{16\pi} \int d^4x \sqrt{-g} \left[ R - 2 
abla_\mu arphi 
abla^\mu arphi + \lambda^2 f(arphi) \mathcal{R}_{GB}^2 
ight]$$

Does this new mechanism occur in a scalar-tensor teleparallel theory?

## Teleparallel Equivalent of General Relativity

Is a formulation of GR that uses the Weitzenböck connection instead of the Levi-Civita connection [Aldrovandi and Pereira, 2013]. **The Weitzenböck connection has non-zero torsion and zero curvature**.

The equivalence with the Riemannian formulation of GR is written as

$$\mathcal{T} = -R + 2 e^{-1} \partial_{\nu} (e T_{\sigma}^{\sigma \nu}), \qquad (1)$$

were the torsion scalar  ${\mathcal T}$  is given by

$$\mathcal{T} = S_{\rho}^{\ \mu\nu} T^{\rho}_{\ \mu\nu} = \frac{1}{4} T^{\rho\mu\nu} T_{\rho\mu\nu} + \frac{1}{2} T^{\rho\mu\nu} T_{\nu\mu\rho} - T_{\rho\mu}^{\ \rho} T^{\nu\mu}_{\ \nu}. \tag{2}$$

In coordinates, the torsion tensor arises from  $T^a=de^a$  and from the Weitzenböck connection  $\Gamma^\lambda_{\mu\nu}=e_a{}^\lambda\,\partial_\mu e^a_{\ \nu}$ . The superpotential is defined as

$$S^{\rho}_{\ \mu\nu} = \frac{1}{4} \left( T^{\rho}_{\ \mu\nu} - T_{\mu\nu}^{\ \rho} + T_{\nu\mu}^{\ \rho} \right) + \frac{1}{2} \delta^{\rho}_{\mu} T_{\sigma\nu}^{\ \sigma} - \frac{1}{2} \delta^{\rho}_{\nu} T_{\sigma\mu}^{\ \sigma}. \tag{3}$$

## Teleparallel Equivalent of General Relativity

In TEGR the torsion include all the information concerning to the gravitational field and the action is given by

$$I = \frac{1}{2\kappa} \int d^4x e \left( \mathcal{T} + \mathcal{L}_m \right), \tag{4}$$

where  $\kappa=8\pi G$ ,  $e=\det(e^a_{\ \mu})=\sqrt{-g}$  and  $\mathcal{L}_m$  is the matter Lagrangian. The variation with respect to the vierbein yields the equations of motion

$$e^{-1}\partial_{\mu}(eS_{a}^{\mu\nu}) - e_{a}^{\lambda}T^{\rho}{}_{\mu\lambda}S_{\rho}^{\nu\mu} - \frac{1}{4}e_{a}^{\nu}\mathcal{T} = 4\pi G e_{a}^{\rho}T_{\rho}^{\mathbf{em}}, \qquad (5)$$

so the field equations coincide with those of GR for any choice of geometry. Here,  $T_{\rho}^{\nu}$  is the usual energy-momentum tensor.

In this work, we consider the scalar-torsion model given by the following action

$$I = \int d^4x \, e \left[ \left( \frac{1}{2\kappa} + f(\phi) \right) \mathcal{T} + \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right] \,, \tag{6}$$

where  $\phi$  is the scalar field and  $f(\phi)$  is a coupling function of the scalar field. We are interested in **studying nonlinear scalarized black hole solutions** in the model (6), so the coupling function must follow the conditions

$$\frac{df(0)}{d\phi} = 0, \quad \frac{d^2f(0)}{d\phi^2} = 0. \tag{7}$$

The first condition guarantees the **Schwarzschild solution is also solution** to the field equations, for  $\phi=0$ , while the second condition was imposed to the fact that **no tachyonic instability is possible**.

Now, varying the action (6) with respect to the vierbein and the scalar field, the equations of motion respectively are

$$\left(\frac{2}{\kappa} + 4f(\phi)\right) \left[e^{-1}\partial_{\mu}(eS_{a}^{\mu\nu}) - e_{a}^{\lambda}T^{\rho}_{\mu\lambda}S_{\rho}^{\nu\mu} - \frac{1}{4}e_{a}^{\nu}T\right] 
- \frac{1}{2}e_{a}^{\nu}\partial_{\mu}\phi\partial^{\mu}\phi + 4f'(\phi)(\partial_{\mu}\phi)S_{a}^{\mu\nu} + e_{a}^{\mu}\partial^{\nu}\phi\partial_{\mu}\phi = 0,$$
(8)

$$\frac{1}{e}\partial_{\nu}(eg^{\mu\nu}\partial_{\mu}\phi) - f'(\phi)\mathcal{T} = 0.$$
 (9)

In the following we consider the case  $f(\phi) = \eta \phi^4$ , where  $\eta$  is a constant which shows the strength of the interaction.

For finding **asymptotically flat black hole solutions**, a static and spherically symmetric diagonal metric ansatz is used

$$ds^{2} = A(r)dt^{2} - \frac{1}{B(r)}dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\varphi^{2}).$$
 (10)

A tetrad that satisfy this condition within the Weitzenböck gauge is

$$e^{a}_{\mu} = \begin{pmatrix} 0 & \frac{i}{\sqrt{B(r)}} & 0 & 0\\ i\sqrt{A(r)}\cos\varphi\sin\theta & 0 & -r\sin\varphi & -r\cos\theta\cos\varphi\sin\theta\\ i\sqrt{A(r)}\sin\theta\sin\varphi & 0 & r\cos\varphi & -r\cos\theta\sin\theta\sin\varphi\\ i\sqrt{A(r)}\cos\theta & 0 & 0 & r\sin^{2}\theta \end{pmatrix}.$$
 (11)

Using the metric (10) and tetrad (11), the field equations (8) and (9) yield

$$E_{t}^{t} \equiv \frac{(rB'(r) + B(r) - 1)(2\eta\kappa\phi(r)^{4} + 1)}{\kappa r^{2}} + \frac{16\eta B(r)\phi(r)^{3}\phi'(r)}{r} + \frac{1}{2}B(r)\phi'(r)^{2} = 0,$$

$$E_{r}^{r} \equiv \frac{(rB(r)A'(r) + A(r)(B(r) - 1))(2\eta\kappa\phi(r)^{4} + 1)}{\kappa r^{2}A(r)} - \frac{1}{2}B(r)\phi'(r)^{2} = 0,$$

$$E_{\theta}^{\theta} \equiv -rB(r)A'(r)^{2}(2\eta\kappa\phi(r)^{4} + 1) + A(r)(2rB(r)A''(r)(2\eta\kappa\phi(r)^{4} + 1) + A'(r)((rB'(r) + 2B(r))(2\eta\kappa\phi(r)^{4} + 1) + 16\eta\kappa rB(r)\phi(r)^{3}\phi'(r))) + 2A(r)^{2}(B'(r)(2\eta\kappa\phi(r)^{4} + 1) + \kappa B(r)\phi'(r)(16\eta\phi(r)^{3} + r\phi'(r))) = 0,$$

$$E_{\phi} \equiv B(r)\phi''(r) + \frac{\phi'(r)(rB(r)A'(r) + A(r)(rB'(r) + 4B(r)))}{2rA(r)} + \frac{8\eta\phi(r)^{3}(rB(r)A'(r) + A(r)(B(r) + 1))}{r^{2}A(r)} = 0.$$

To find scalarized black hole solutions, we solve the system of equations (12) numerically. To facilitate the numerical integration, we introduce a bounded radial coordinate  $z = 1 - r_H/r$  and redefine the metric functions and scalar field as

$$A(z) = za(z), \quad B(z) = zb(z), \quad \phi(z) = (1-z)\psi(z).$$

The differential equations are solved using the shooting method, which requires the Taylor expansions of the metric functions and the scalar field near the event horizon (z = 0) and at spatial infinity ( $z \to 1$ ).

#### **Event Horizon**

$$a(z) = a_H + a_{H1}(a_H, \psi_H, \eta)z + \dots,$$
  
 $b(z) = 1 + b_{H1}(b_H, \psi_H, \eta)z + \dots,$   
 $\psi(z) = \psi_H + \psi_{H1}(\psi_H, \eta)z + \dots$ 

## Spatial Infinity

$$a(z) = 1 + a_1(b_1)(1-z) + \dots,$$
  
 $b(z) = 1 + b_1(1-z) + \dots,$   
 $\psi(z) = \psi_{\infty} + \psi_1(b_1, \psi_{\infty})(1-z) + \dots$ 

The asymptotically flat scalarized black holes solutions are characterized by five parameters:  $\{\eta, a_H, \psi_H, \psi_\infty, b_1\}$ .

For fixed  $\eta$ , specific values of  $\{a_H, \psi_H, \psi_\infty, b_1\}$  yield bounded scalar solutions whose behavior depends on the number of nodes. While only node-less solutions exist for small  $\eta$ , increasing  $\eta$  leads to multiple solutions with varying numbers of nodes.

| Type of BH    | $\eta$ | Nodes | a <sub>H</sub> | $\psi_{H}$ | $\psi_\infty$ | $b_1$  | Label |
|---------------|--------|-------|----------------|------------|---------------|--------|-------|
| Schwarzschild |        |       | 1              | 0          | 0             | 0      |       |
| Scalarized    | 2      | 0     | 0.979          | 0.250      | 0.125         | -0.005 | lla   |
|               |        | 1     | 0.004          | 1.410      | -0.540        | -0.070 | IIb   |
|               |        | 1     | 0.205          | 0.764      | -0.719        | -0.068 | llc   |

Table: Parameters of the Schwarzschild and scalarized black hole solutions for  $\eta = 2$ .

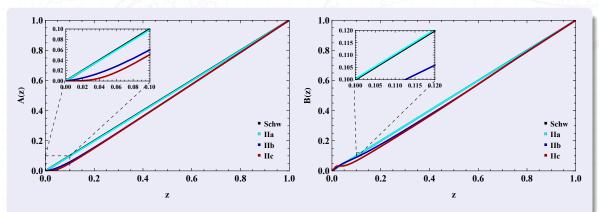


Figure: Left panel for the behavior of A(z) as a function of z. Right panel for the behavior of B(z) as a function of z. Black line for Schwarzschild, cyan line for IIa, blue line for IIb, and red line for IIc.

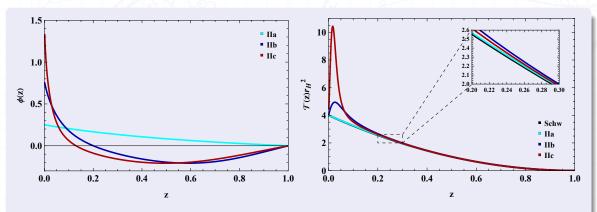


Figure: Left panel for the behavior of  $\phi(z)$  as a function of z. Right panel for the behavior of  $\mathcal{T}(z)r_H^2$  as a function of z. Black line for Schwarzschild, cyan line for IIa, blue line for IIb, and red line for IIc.

## Thermodynamics Mass & Entropy

We thermodynamically analyze the solutions by deriving the entropy and mass of the scalarized BH solutions using two different methods:

#### Padmanabhan Method [Padmanabhan, 2012]

Mass

$$\mathcal{M} = rac{\mathsf{a}_H \left( rac{1}{\kappa} + 2 \eta \psi_H^4 
ight)}{T}$$

**Entropy** 

$$S = \frac{a_H(\frac{1}{\kappa} + 2\eta\psi_H^4)}{2T^2}$$

## Wald's Formalism [Iyer and Wald, 1994]

**ADM Mass** 

$$\mathcal{E} = \frac{(1 - b_1)\sqrt{a_H}}{\kappa T}$$

Entropy

$$S = \frac{\mathsf{a}_{\mathsf{H}}(\frac{1}{\kappa} + 2\eta\psi_{\mathsf{H}}^4)}{2\mathsf{T}^2}$$

The temperature is given by  $T=\frac{\sqrt{a_H}}{4\pi r_H}$ . Both approaches lead to the same expression for the entropy,  $\mathcal{S}=\frac{A}{4G}+4\pi f(\psi_H)A$ , revealing corrections to the standard area law due to the scalar coupling  $f(\phi)=\eta\phi^4$ , with  $A=4\pi r_H^2$ .

## Thermodynamics Mass & Entropy

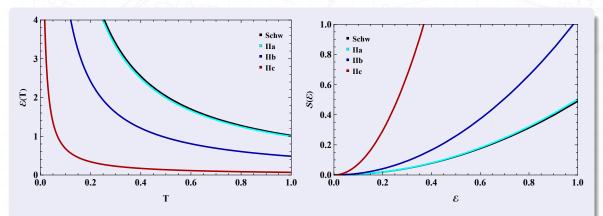


Figure: Left panel for the behavior of the ADM mass  $\mathcal E$  as a function of temperature. Right panel for the behavior of the entropy as a function of the ADM mass  $S(\mathcal E)$ . Black line for Schwarzschild, cyan line for IIa, blue line for IIb, red line for IIc.

Scalarized BHs are always entropically preferred over the Schwarzschild BH.

## Thermodynamics Phase Transitions

We study first-order and second-order phase transitions between scalarized and Schwarzschild black holes by analyzing the behavior of the free energy  $\mathcal F$  and the heat capacity  $\mathcal C$ , which allow us to determine the thermodynamic stability and the nature of the transition.

$$\begin{split} \mathcal{F} &= \mathcal{E} - \mathcal{T} \mathcal{S} = \frac{\sqrt{a_H}}{\mathcal{T}} \left( \frac{1 - b_1}{\kappa} - \frac{\sqrt{a_H}}{2} \left( \frac{1}{\kappa} + 2 \eta \psi_H^4 \right) \right) \,, \\ \mathcal{C} &= \frac{\partial \mathcal{E}}{\partial \mathcal{T}} = - \frac{(1 - b_1) \sqrt{a_H}}{\kappa \mathcal{T}^2} = - \frac{\mathcal{E}}{\mathcal{T}} \,. \end{split}$$

## Thermodynamics Phase Transitions

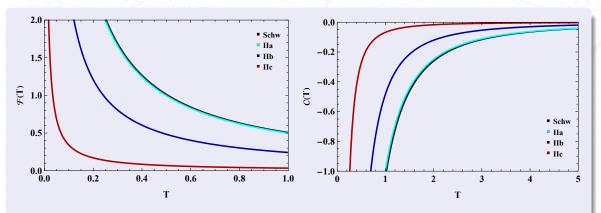


Figure: Left panel for the behavior of  $\mathcal F$  as a function of temperature. Right panel for the behavior of  $\mathcal C$  as a function of temperature.

Scalarized black hole solutions are meta-stable and don't exhibit first or second-order phase transitions.

#### Final Remarks

### Summary

A scalar–tensor theory within the framework of Teleparallel Gravity was studied, where the scalar field couples to the torsion scalar through a function that avoids tachyonic instabilities.

Numerical results show the **formation of new black holes with scalar hair**, arising from the scalarization of the Schwarzschild solution.

Asymptotically flat solutions with zero, one, and two scalar-field nodes were analyzed using Padmanabhan's and Wald's formalisms. The scalarized black holes are meta-stable and show no first- or second-order phase transitions.

Finally, scalarized black holes are thermodynamically favored over the Schwarzschild solution due to their lower free energy and higher entropy.

#### Final Remarks

### Acknowledgments

I would like to thank the organizing committee of CCP25 and the Cosmology and Gravitation Group (UBB) for their invitation, and the Universidad de Bío-Bío for their hospitality.

I also acknowledge financial support from the Universidad de La Serena for attending the conference. This work is partially supported by ANID–Chile through FONDECYT Grant  $N^{\circ}$  1220871.







# Nonlinear Scalarization of Schwarzschild Black Hole in Scalar-Torsion Teleparallel Gravity

10.1103/PhysRevD.111.044064

P. González, E. Papantonopoulos, **Joaquín Robledo**<sup>1</sup> and Y. Vásquez <sup>1</sup>PhD Student at Universidad de Tarapacá, Universidad de La Serena, Universidad de Valparaíso

Encuentro COSMOCONCE y PARTÍCULAS 2025, Concepción, November 5-7 2025