Unifying gravity and gauge bosons with supersymmetry in the adjoint representation

Pedro Alvarez
Universidad San Sebatian
Centro de Estudios Cientificos

Agencia Nacional de Investigación v Desarrollo

Ministerio de Ciencia, Tecnología, Conocimiento e Innovación

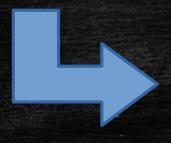
Gobierno de Chile

Outline of the talk

1) Motivation

2) Main features of the idea

3) "Unifying models"



current and future projects

Motivation

S-matrix

$$\langle \phi | \mathcal{S} | \psi \rangle = \lim_{t \to \infty} \langle \phi | \mathcal{T}[e^{-i \int_{-t}^{t} \hat{H}_I(t') dt'}] | \psi \rangle$$

Golfand & Likhtman; Haag-Lopuszański-Sohnius Theorem

Fermionic extension Poincare symmetry

Internal symmetries

Modifical

Phenomenological susy (linear representations) - MSSM (global susy)

+ SUGRA MSSM (local susy)

- -+ Chiral supermultiplet (matter and Higgs)
 Vector supermultiplet (gauge bosons)
 + Gravity supermultiplet (gravitino)

Motivatrion

Phenomenological susy (linear representations)

- MSSM (global susy)
- ~ 100 free parameters
- + SUGRA MSSM (local susy)
- ~ 20 free parameters

Strong departure from unification ideas

tiplet (matter and Higgs) iplet (gauge bosons) tiplet (gravitino)

Motivatrion

Phenomenological susy (linear representations)

- MSSM (global susy)
- ~ 100 free parameters
- + SUGRA MSSM (local susy)
- ~ 20 free parameters

Strong departure from unification ideas

tiplet iplet (tiplet (matter and Higgs)

Where are all the superpartners?

Motivation

Phenomenological susy (linear representations)

Is the implementation of susy in the adjoint representation more appropriate?

Strong departure from unification ideas

tiplet iplet (tiplet

(matter and Higgs)

Where are all the superpartners?

My collaborators in this topic

- J. Zanelli (CECs, USS), C. Corral (UTFS Vina del Mar), A. Chavez (phd student at Antofagasta U.), J. Ortiz (Colombia)
- M. Valenzuela (CECs, USS), P. Pais (U. Austral), E. Rodriguez (U. Nac. Colombia),
 P. Salgado (Wroclaw Tech. U.), L. Delage
- Fernando Izaurieta, Adytia
 Sharma(postdoc cecs), etc...?

How? / Kinematics

"Geometric models"

Summary of the idea

 We study a general recipe to implement models for gravity, gauge bosons and matter fields using the adjoint reresentation of the superconformal algebra

$$\mathbb{A} = A^M \mathbb{G}_M + \overline{\mathbb{Q}} \phi \psi + \overline{\psi} \phi \mathbb{Q}$$
 ϵ

su(2,2|N)

→ Fermion/boson matching of d.o.f. is **not mandatory**.

Sohnius '85 - adjoint representation - nonlinear realizations

- → Standard gauge kinetic terms are included.
- → Models are highly predictive, few free parameters in the action.
- → Also included **non-minimal couplings**: scalar-tensor induced gravity, fermion quartic terms (NJL-mass), torsion couplings, etc...

How?

All fields in the gauge potential

Bosons and fermions in the adjoint representation:

$$\mathbb{A} = A^M \mathbb{G}_M + \overline{\mathbb{Q}} \phi \psi + \overline{\psi} \phi \mathbb{Q}$$

$$A^M \mathbb{G}_M = W^S \mathbb{J}_S + A^I \mathbb{T}_I + A \mathbb{Z}$$
 spacetime internal susy central

 Spinor matter fields require the introduction of a soldering form → gravity

$$\phi\psi = e^a{}_\mu dx^\mu \gamma_a \psi$$

$$g_{\mu\nu} = \eta_{ab} e^a{}_{\mu} e^b{}_{\nu}$$

How?

All fields in the gauge potential

Bosons and fermions in the adjoint representation:

$$\mathbb{A} = A^M \mathbb{G}_M + \overline{\mathbb{Q}} \psi + \overline{\psi} \psi \mathbb{Q}$$

$$A^M \mathbb{G}_M = W^S \mathbb{J}_S + A^I \mathbb{T}_I + A \mathbb{Z}$$
 spacetime internal susy central

 Spinor matter fields require the introduction of a soldering form → gravity

$$\phi \psi = e^a{}_\mu dx^\mu \gamma_a \psi$$

$$g_{\mu\nu} = \eta_{ab} e^a{}_{\mu} e^b{}_{\nu}$$

Kinematics

Matter in the adjoint representation:

$$\psi^{\alpha} \in A_{\mu}$$

• Red. Reps.

$$\Psi^{\alpha}_{\mu} = 1 \otimes 1/2 = 3/2 \oplus 1/2$$

(a) Gravitino (SUGRA)

$$\xi^{\alpha}_{\mu}: \gamma^{\mu}\xi^{\alpha}_{\mu} = 0$$

$$P_{(1/2)}\xi^{\alpha}_{\mu} = 0$$

$$\psi^{\alpha}_{\mu} = \gamma_{\mu} \psi^{\alpha}$$

$$P_{(3/2)}\psi^{\alpha}_{\mu} = 0$$

Unconventional SUSY: fields in the adjoint rep

$$\mathbb{A}_{\mu} \supset \overline{Q} e^{a}{}_{\mu} \gamma_{a} \psi$$

We choose a basis of the conformal superalgebra with complex Q's, where the R-symmetry is identified with the internal symmetry (see Trigiante's lectures on supergravity)

Correct gauge transformations

$$\delta A = DG$$

$$\begin{cases} \delta A_{SU(N)} = D\lambda_{SU(N)} \\ \delta \psi = [\lambda_{SU(N)}, \psi] \end{cases}$$

$$\delta\psi = [\lambda_{SU(N)}, \psi]$$

Unconventional SUSY: fields in the adjoint rep

$$\mathbb{A}_{\mu} \supset \overline{Q} e^{a}{}_{\mu} \gamma_{a} \psi$$

 We choose a basis of the conformal superalgebra with complex Q's, where the R-symmetry is identified with the internal symmetry (see Trigiante's lectures on supergravity)

Correct gauge transformations

$$\delta A = DG$$

$$\delta A_{SU(N)} = D\lambda_{SU(N)}$$

$$\delta\psi = [\lambda_{SU(N)}, \psi]$$

At our disposal are the algebra series

SU(2|N) D=3OSp(p,2) OSp(p,2) x OSp(q,2) SU(2,2|N) OSp(N,4)

D=4

How? Invariant terms USUSY

$$S=rac{1}{2}\int\langle\mathbb{A}d\mathbb{A}+rac{2}{3}\mathbb{A}^3
angle \ .$$

Phys.Lett.B 738 (2014) 134-135; **1405.6657** Phys.Lett.B 735 (2014) 314-321; **1306.1247** JHEP 04 (2012) 058; **1109.3944**

MacDowell, Mansouri type of action '77

$$S = \int \langle \mathbb{F} \circledast \mathbb{F} \rangle$$

similarity can be exploited to study field equations and symmetries [PA, Chavez, Zanelli 2111.09845]

$$\epsilon_{abcd}(R^{ab} + e^a e^b)(R^{cd} + e^c e^d) \quad \epsilon \quad S = \int \langle \mathbb{F} \circledast \mathbb{F} \rangle$$

$$oldsymbol{\in} oldsymbol{\mid} S = \int \langle \mathbb{F} \circledast \mathbb{F}
angle$$

Lorentz invariant bilinears

$$\langle \mathbb{J}_{ab} \mathbb{J}_{cd} \rangle = -(\eta_{ac} \eta_{bd} - \eta_{bc} \eta_{ad})$$

$$\epsilon_{abcd}(R^{ab} + e^a e^b)(R^{cd} + e^c e^d) \quad \epsilon \quad S = \int \langle \mathbb{F} \circledast \mathbb{F} \rangle$$

Lorentz invariant bilinears

$$\langle \mathbf{J}_{ab} \mathbf{J}_{cd} \rangle = -(\eta_{ac} \eta_{bd} - \eta_{bc} \eta_{ad})$$

Lorentz connection

$$\left| \mathbb{A} = \frac{1}{2} \omega^{ab} \mathbb{J}_{ab} \right|$$

$$\left| \mathbb{F} = \frac{1}{2} R^{ab} \mathbb{J}_{ab} \right|$$

Pontryagin

$$\int R^{ab}R_{ab}$$

$$\epsilon_{abcd}(R^{ab} + e^a e^b)(R^{cd} + e^c e^d) \quad \epsilon \quad S = \int \langle \mathbb{F} \circledast \mathbb{F} \rangle$$

$$S = \int \langle \mathbb{F} \circledast \mathbb{F}
angle$$

Lorentz invariant bilinears

$$\langle \mathbf{J}_{ab} \mathbf{J}_{cd} \rangle = -(\eta_{ac} \eta_{bd} - \eta_{bc} \eta_{ad})$$

Lorentz connection

$$\left| \mathbb{A} = \frac{1}{2} \omega^{ab} \mathbb{J}_{ab} \right|$$

AdS connection

$$\mathbb{A} = \frac{1}{2}\omega^{ab}\mathbb{J}_{ab} + e^a\mathbb{J}_a$$

$$\left| \mathbb{F} = \frac{1}{2} R^{ab} \mathbb{J}_{ab} \right|$$

$$\mathbb{F} = \frac{1}{2}(R^{ab} + e^a e^b)\mathbb{J}_{ab} + T^a J_a$$

Pontryagin

$$\int R^{ab}R_{ab}$$

AdS Pontryagin

$$\int \mathcal{R}^{ab} \mathcal{R}_{ab}$$

$$\epsilon_{abcd}(R^{ab} + e^a e^b)(R^{cd} + e^c e^d) \quad \epsilon \quad S = \int \langle \mathbb{F} \circledast \mathbb{F} \rangle$$

MM formulation

$$\langle \mathbb{J}_{ab} S \mathbb{J}_{cd} \rangle \propto \epsilon_{abcd}$$

 $adS \sim sp(4)$ (adS gravity)

$$\epsilon_{abcd}(R^{ab} + e^a e^b)(R^{cd} + e^c e^d) \quad \epsilon \quad S = \int \langle \mathbb{F} \circledast \mathbb{F} \rangle$$

MM formulation

$$\langle \mathbb{J}_{ab} S \mathbb{J}_{cd} \rangle \propto \epsilon_{abcd}$$

$$\langle \overline{\mathbb{Q}}_{\alpha} S \overline{\mathbb{Q}}_{\beta} \rangle \propto (\gamma_5)_{\alpha\beta}$$

Also valid in osp(1,4)(simple sugra)

$$\mathbf{A} = \frac{1}{2}\omega^{ab}\mathbf{J}_{ab} + e^{a}\mathbf{J}_{a} + \overline{\mathbf{Q}}_{\alpha}\chi^{\alpha}$$

$$\mathbb{F} = \frac{1}{2} F^{ab} \mathbb{J}_{ab} + T^a J_a + \overline{\mathbb{Q}}_{\alpha} \mathcal{D} \chi^{\alpha}$$

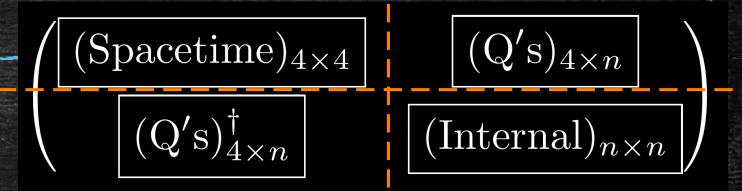
$$\mathcal{D}\chi = D\chi + e^a \gamma_a \chi$$

$$D\chi(C\gamma_5)D\chi=0$$

$$\mathcal{L}_{\mathrm{RS}} \propto \chi e^a \gamma_a D \chi$$

Unconventional SUSY

$$S = \int \langle \mathbb{F} \circledast \mathbb{F} \rangle$$



Gauge bosons

Unconventional SUSY

$$S = \int \langle \mathbb{F} \circledast \mathbb{F} \rangle$$

$$\begin{array}{|c|c|c|}
\hline
& (Spacetime)_{4\times4} \\
\hline
& (Q's)_{4\times n}^{\dagger}
\end{array}$$

$$\begin{array}{|c|c|}
\hline
(Q's)_{4\times n} \\
\hline
(Internal)_{n\times n}
\end{array}$$

Gauge bosons

We also include matter fields s=1/2

$$\mathbf{A} = \frac{1}{2}\omega^{ab}\mathbf{J}_{ab} + e^{a}\mathbf{J}_{a} + \frac{1}{2}F^{ij}\mathbf{J}_{ij} + \mathbf{Q}_{\alpha}\psi^{\alpha}$$

$$\chi^{\alpha} \rightarrow (\not e \psi)^{\alpha}$$

Unconventional SUSY

$$S = \int \langle \mathbb{F} \circledast \mathbb{F} \rangle$$

$$\left(\begin{array}{c}
\left(\text{Spacetime}\right)_{4\times4} \\
\left(\text{Q's}\right)_{4\times n}^{\dagger}
\right)$$

$$\frac{\left[(Q's)_{4\times n} \right]}{(Internal)_{n\times n}}$$

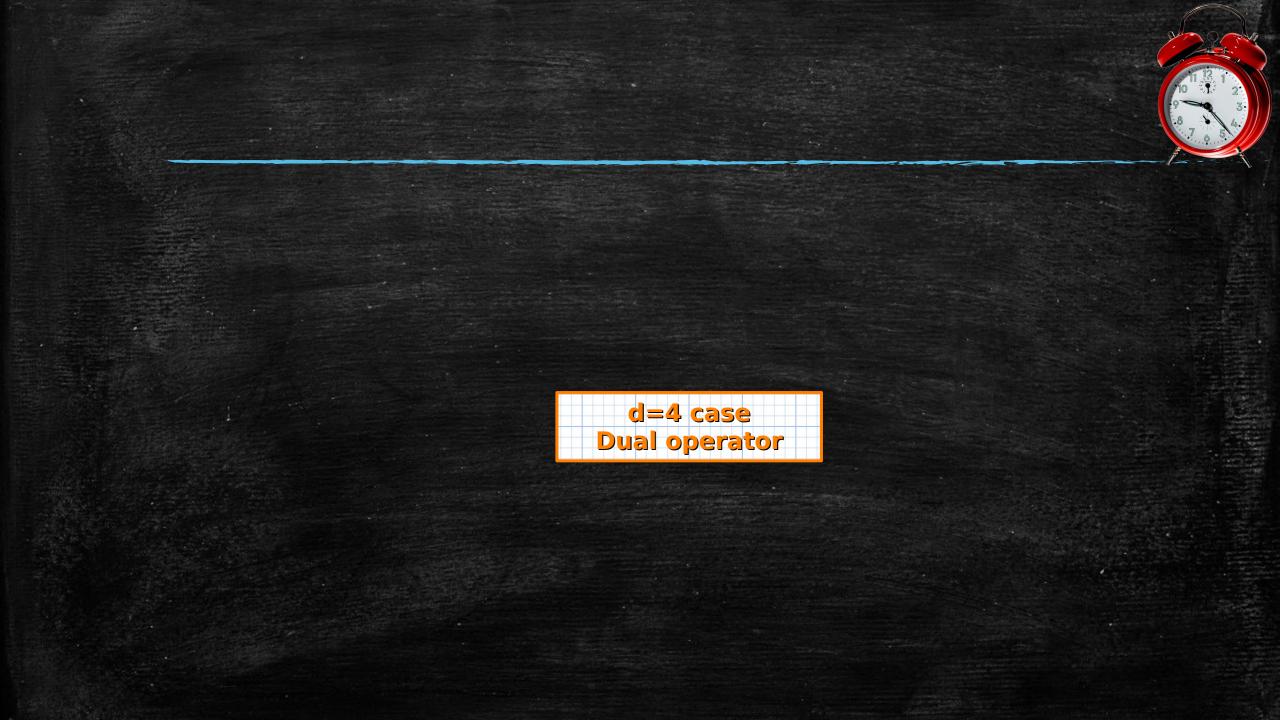
Gauge bosons

We also include matter fields s=1/2

$$\mathbb{A} = \frac{1}{2}\omega^{ab}\mathbb{J}_{ab} + e^{a}\mathbb{J}_{a} + \frac{1}{2}F^{ij}\mathbb{J}_{ij} + \mathbb{Q}_{\alpha} \not\in \psi^{\alpha}$$

$$\chi^{\alpha} \rightarrow (\phi \psi)^{\alpha}$$

we refined the definition of the generalized dual operator in d=4



SU(2,2|N)

Properties of the dual operator

Action

$$I = -\int_{\mathcal{M}} \langle \mathbb{F} \wedge \circledast \mathbb{F} \rangle$$
,

"Generalized Townsend-MacDowell-Mansouri"

Conformal algebra grading

$$S G - \varepsilon G S = 0$$
, where
$$\begin{cases} \varepsilon = +1, & \text{if } G \in \{\mathbb{J}_{ab}, \mathbb{D}, \mathbb{Z}, \mathbb{T}_I\}, \\ \varepsilon = -1, & \text{if } G \in \{\mathbb{J}_a, \mathbb{K}_a\}. \end{cases}$$

Invariant traces

$$\langle \mathbb{E}_1 \circledast \mathbb{E}_2 \rangle = \langle \mathbb{E}_2 \circledast \mathbb{E}_1 \rangle, \quad \langle \mathbb{O}_1 \circledast \mathbb{O}_2 \rangle = -\langle \mathbb{O}_2 \circledast \mathbb{O}_1 \rangle,$$

$$\langle \mathbb{E} \circledast \mathbb{O} \rangle = 0 = \langle \mathbb{O} \circledast \mathbb{E} \rangle,$$

PA, Valenzuela, Zanelli '20 PA, Delage, Valenzuela, Zanelli,'21 PA, Chavez, Zanelli '22

Auxiliar fields

$$\langle \mathbb{F}^- \wedge \circledast \mathbb{F}^- \rangle = 0,$$

Auxiliar fields

$$\langle \mathbb{F}^- \wedge \circledast \mathbb{F}^- \rangle = 0 \,,$$

⊛-Odd

 $\mathbb{F}^- = \mathcal{F}^a \mathbb{J}_a + \mathcal{G}^a \mathbb{K}_a$.

"Compensating fields"

 f^a and g^a do not acquire independent kinetic terms

Algebraic equations

Auxiliar fields

$$\langle \mathbb{F}^- \wedge \circledast \mathbb{F}^- \rangle = 0 \,,$$

⊛-Odd

$$\mathbb{F}^- = \mathcal{F}^a \mathbb{J}_a + \mathcal{G}^a \mathbb{K}_a .$$

"Compensating fields"

 f^a and g^a do not acquire independent kinetic terms

Algebraic equations

Field eqs. have cubic and linear terms

Strong deviation from conformal sugra

SU(2,2|N)

$$I = -\int_{\mathcal{M}} \langle \mathbb{F} \wedge \circledast \mathbb{F} \rangle ,$$

Variation

$$\delta(-\langle \mathbb{F} \circledast \mathbb{F} \rangle) = -2d\langle \delta \mathbb{A} \circledast (\mathbb{F} - \mathbb{F}^-) \rangle - 2\langle \delta \mathbb{A} D_{\mathbb{A}} \circledast (\mathbb{F} - \mathbb{F}^-) \rangle.$$

Field eqs

$$D_{\mathbb{A}} \circledast (\mathbb{F} - \mathbb{F}^-) = 0,$$

$$[\mathbb{F}, \circledast (\mathbb{F} - \mathbb{F}^-)] = 0.$$

$$[\mathbb{F}, \circledast(\mathbb{F} - \mathbb{F}^{-})] = [\mathbb{F}^{+}, \circledast\mathbb{F}^{+}] + [\mathbb{F}^{-}, \circledast\mathbb{F}^{+}] + [\mathbb{X}, \circledast\mathbb{X}] + [(\mathbb{F} - \mathbb{X}), \circledast\mathbb{X}] + [\mathbb{X}, \circledast\mathbb{F}^{+}],$$

Integrability condition

$$[\mathbb{F}^+, \circledast \mathbb{F}^+] \equiv 0$$

$$[X, \circledast X] \sim B^-$$
.

$$[(\mathbb{F} - \mathbb{X}), \circledast \mathbb{X}] + [\mathbb{X}, \circledast \mathbb{F}^+],$$

- "Easy" tivial terms,
- "healthy" gauge symmetries
- YM only has these

Conditions on Traslation components Conditions on susy components

SU(2,2|N)

$$I = -\int_{\mathcal{M}} \langle \mathbb{F} \wedge \circledast \mathbb{F} \rangle ,$$

Gauge variation

$$\delta(-\langle \mathbb{F} \circledast \mathbb{F} \rangle) = -2d\langle D_{\mathbb{A}} G \circledast (\mathbb{F} - \mathbb{F}^{-}) + GD_{\mathbb{A}} \circledast (\mathbb{F} - \mathbb{F}^{-}) \rangle + 2\langle G[\mathbb{F}, \circledast (\mathbb{F} - \mathbb{F}^{-})] \rangle.$$

generator

$$G = G^{+} + G^{-} + \overline{\mathbb{Q}}\epsilon - \overline{\epsilon}\mathbb{Q},$$

same condition as before (Integrability condition)

Aros at al 2000 in the context of AdS gravity

$$I = -\int_{\mathcal{M}} \langle \mathbb{F} \wedge \circledast \mathbb{F} \rangle ,$$

generalized notion of self-duality

$$\circledast (\mathbb{F} - \mathbb{F}^{-}) = \pm (\mathbb{F} - \mathbb{F}^{-}).$$

SU(2,2|N)

$$I = -\int_{\mathcal{M}} \langle \mathbb{F} \wedge \circledast \mathbb{F} \rangle ,$$

generalized notion of self-duality

$$\circledast (\mathbb{F} - \mathbb{F}^-) = \pm (\mathbb{F} - \mathbb{F}^-).$$

$$\otimes \left(\frac{1}{2}\mathcal{F}^{ab}\mathbb{J}_{ab} + \mathcal{F}^{a}\mathbb{J}_{a} + \mathcal{G}^{a}\mathbb{K}_{a}\right) = S\left(\frac{1}{2}\mathcal{F}^{ab}\mathbb{J}_{ab} + \mathcal{F}^{a}\mathbb{J}_{a} + \mathcal{G}^{a}\mathbb{K}_{a}\right)$$
 Explicit form of the operator acting on spacetime generators
$$= \frac{1}{2}\mathcal{F}^{ab}S\mathbb{J}_{ab} + \mathcal{F}^{a}S\mathbb{J}_{a} + \mathcal{G}^{a}S\mathbb{K}_{a} \, .$$

$$(\mathbb{J}_{ab})^{A}_{B} = \frac{1}{4} [\gamma_a, \gamma_b]^{A}_{B} = (\Sigma_{ab})^{A}_{B}$$

$$(\mathbb{J}_a)^A_{\ B} = \frac{s}{2} (\gamma_a)^{\alpha}_{\ \beta} \delta^A_{\ \alpha} \delta^\beta_{\ B} = \frac{s}{2} (\gamma_a)^A_{\ B}$$

Even

$$(\mathbb{D})^{A}_{B} = rac{1}{2} (\gamma_5)^{A}_{B}$$

$$S = i(\gamma_5)^A{}_B$$

$$\left(\mathbb{K}_a\right)_B^A = \frac{1}{2} (\tilde{\gamma}_a)_B^A$$

$$\tilde{\gamma}_a = \frac{i}{3!} \epsilon_{abcd} \gamma^{bcd} = -\gamma_5 \gamma_a$$

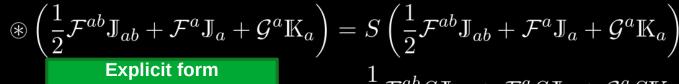
|SU(2,2|N)|

$$I = -\int_{\mathcal{M}} \langle \mathbb{F} \wedge \circledast \mathbb{F} \rangle ,$$

Generalization of self-duality **PA Corral Zanelli**

generalized notion of self-duality

$$\circledast (\mathbb{F} - \mathbb{F}^-) = \pm (\mathbb{F} - \mathbb{F}^-).$$



of the operator acting on spacetime generators

$$= \frac{1}{2} \mathcal{F}^{ab} S \mathbb{J}_{ab} + \mathcal{F}^a S \mathbb{J}_a + \mathcal{G}^a S \mathbb{K}_a.$$

$$(\mathbb{J}_{ab})_{B}^{A} = \frac{1}{4} [\gamma_a, \gamma_b]_{B}^{A} = (\Sigma_{ab})_{B}^{A}$$

$$(\mathbb{J}_a)_B^A = \frac{s}{2} (\gamma_a)_\beta^\alpha \delta_\alpha^A \delta_B^\beta = \frac{s}{2} (\gamma_a)_B^A$$

$$(\mathbb{D})^{A}_{B} = \frac{1}{2} (\gamma_5)^{A}_{B}$$

$$S = i(\gamma_5)^A{}_B$$

$$(\mathbb{K}_a)_B^A = \frac{1}{2} (\tilde{\gamma}_a)_B^A$$

$$\tilde{\gamma}_a = \frac{i}{3!} \epsilon_{abcd} \gamma^{bcd} = -\gamma_5 \gamma_a$$

Concrete definition

$$\frac{1}{2}\varepsilon_s \epsilon^{ab}{}_{cd} \mathcal{F}^{cd} = \pm \frac{1}{2} \mathcal{F}^{ab},$$

$$\varepsilon_1 * \mathcal{H} = \pm \mathcal{H},$$

$$\varepsilon_2 * \mathcal{F}^I = \pm \mathcal{F}^I,$$

$$\varepsilon_3 * \mathcal{F} = \pm \mathcal{F},$$

$$(-i\varepsilon_{\psi}\gamma_5)\mathcal{X} = \pm \mathcal{X},$$

$$\overline{\mathcal{X}}(-i\varepsilon_{\psi}\gamma_5) = \pm \overline{\mathcal{X}}.$$

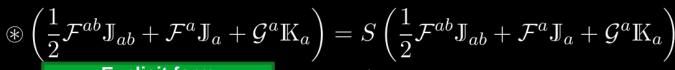
SU(2,2|N)

$$I = -\int_{\mathcal{M}} \langle \mathbb{F} \wedge \circledast \mathbb{F} \rangle ,$$

Generalization of self-duality / PA Corral Zanelli

generalized notion of self-duality

$$\circledast (\mathbb{F} - \mathbb{F}^{-}) = \pm (\mathbb{F} - \mathbb{F}^{-}).$$



Explicit form of the operator acting on spacetime generators

$$= \frac{1}{2} \mathcal{F}^{ab} S \mathbb{J}_{ab} + \mathcal{F}^a S \mathbb{J}_a + \mathcal{G}^a S \mathbb{K}_a.$$

$$(\mathbb{J}_{ab})^{A}_{B} = \frac{1}{4} [\gamma_a, \gamma_b]^{A}_{B} = (\Sigma_{ab})^{A}_{B}$$

$$(\mathbb{J}_a)_B^A = \frac{s}{2} (\gamma_a)_\beta^\alpha \delta_\alpha^A \delta_B^\beta = \frac{s}{2} (\gamma_a)_B^A$$

Even

$$(\mathbb{D})^{A}_{B}=rac{1}{2}(\gamma_5)^{A}_{B}$$

$$S = i(\gamma_5)^A{}_B$$

$$(\mathbb{K}_a)^A_{\ B} = rac{1}{2} (ilde{\gamma}_a)^A_{\ B}$$

$$ilde{\gamma}_a = rac{i}{3!} \epsilon_{abcd} \gamma^{bcd} = -\gamma_5 \gamma_a$$

Concrete definition

$$\frac{1}{2}\varepsilon_s \epsilon^{ab}{}_{cd} \mathcal{F}^{cd} = \pm \frac{1}{2} \mathcal{F}^{ab},$$

$$\varepsilon_1 * \mathcal{H} = \pm \mathcal{H}$$
,

$$\varepsilon_2 * \mathcal{F}^I = \pm \mathcal{F}^I$$
,

$$\varepsilon_3 * \mathcal{F} = \pm \mathcal{F}$$
,

$$(-i\varepsilon_{\psi}\gamma_5)\mathcal{X} = \pm \mathcal{X}$$
,

$$\overline{\mathcal{X}}(-i\varepsilon_{\psi}\gamma_{5}) = \pm \overline{\mathcal{X}}$$
.

Action on fermionic components

SU(2,2|N)

generalized notion

of self-duality

$$I = -\int_{\mathcal{M}} \langle \mathbb{F} \wedge \circledast \mathbb{F} \rangle ,$$

of self-duality PA Corral Zanelli

$$\circledast (\mathbb{F} - \mathbb{F}^-) = \pm (\mathbb{F} - \mathbb{F}^-).$$

Explicit form

of the operator acting on spacetime generators

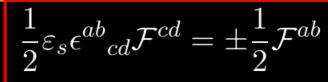
torsional generalization of

Taub-NUT/Bolt-AdS

Eguchi-Hanson metric

Generalization

Concrete definition



$$\varepsilon_1 * \mathcal{H} = \pm \mathcal{H}$$
,

$$\varepsilon_2 * \mathcal{F}^I = \pm \mathcal{F}^I$$
,

$$\varepsilon_3 * \mathcal{F} = \pm \mathcal{F}$$
,

$$(-i\varepsilon_{\psi}\gamma_5)\mathcal{X} = \pm \mathcal{X},$$

$$\overline{\mathcal{X}}(-i\varepsilon_{\psi}\gamma_{5}) = \pm \overline{\mathcal{X}}.$$

PA, Corral, Zanelli 2310.02769

Models and Milestones

D=4

- Implementation of USUSY in d=4

dirac term is reproducted by USUSY in MM type of action Phys.Lett.B 735 (2014) 314-321

- Chiral gauge theory from USUSY, onshell symmetries dual operator, chiral gauge theory (left handed fermions from left-right symmetric theory) JHEP 07 (2020) 07, 205

- SU(2,2|N) model

paving the road to GUT models 1/2 PA, Chavez,

J.Math.Phys. 63 (2022) 042304

- Embedding of rank 2 supercharges

paving the road to GUT models 2/2 PA, Chavez, J.Math.Phys. 63 (2022) 042304

- SU(2|2,10) GUT model SU(5) inspired

SU(5) inspired GUT PA, Chavez, Zanelli J.Math.Phys. 63 (2022) 042304

- Black holes solutions

PA Corral, Zanelli, 2211.15585, JHEP 01 (2023) 009

- Self-dual solutions

Notion of self-duality PA, Corral, Zanelli, JHEP 01 (2024) 065

- Cosmological "induced gravity model"

work in progress...

Gauge theory of elementary particle physics

Ta-Pei Cheng and Ling-Fong Li

4	C	٠	:£:4	
4	Grand	า แท	iticat	'ION

	Grana annication	
14.1	Introduction to the SU(5) model	428
14.2	Spontaneous symmetry breaking and gauge hierarchy	434
14.3	Coupling constant unification	437
14.4	Proton decay and baryon asymmetry in the universe	442
14.5	Fermion masses and mixing angles in the minimal SU(5) model	447

Conformal superalgebra GUT

Punch line:

- → We embeded the SU(5) Georgi-Glashow in SU(2,2|10) USUSY
- → the model incudes gravity fields in the same gauge connection

things to improve:

PA, Chavez, Zanelli hep-th/2211.12473

- → Resulting model is anomalous
- → Anomalies can be computed by traces of generators in the algebra but USUSY taught us that we should also learn how to compute them super-traces!
- → SO(10) model has more chances of being anomaly free

Current/Future developments

- generalization of the dual operator
- masses of psi, dark sectors? DM? cosmology with DE and DM (improvement to "induced gravity")
- implementation of the coset idea to construct gauge invariant models in general
- SO(10) spin representation, anomalies?
- better understanding of the integrability conditions?

Current/Future developments

- generalization of the dual operator
- masses of psi, dark sectors? DM? cosmology with DE and DM (improvement to "induced gravity")
- implementation of the coset idea to construct gauge invariant models in general
- SO(10) spin representation, anomalies?
- better understanding of the integrability conditions?

 Hav becas v dinero.

Hay becas y dinero, solo faltan valientes...

GUT/solutions

- PA, Chavez, Zanelli, J Mat Phys 63 (4) p. 042304; **2110.06828**
- PA, Chavez, Zanelli, JHEP 02 (2022) 111; **2111.09845**
- PA, Chavez, Zanelli, **2211.12473**
- PA, Corral, Zanelli, **2211.15585**, JHEP 01 (2023) 009
- PA, Ortiz, **2208.07897**, Class.Quant.Grav. 39 (2022) 24, 245007
- PA, Corral, Zanelli **2310.02769**, JHEP 01 (2024) 065

D=4

- Phys. Lett. B 735 (2014) 314-321
- Class. Quant. Grav. 32 (2015) 17, 175014; **1505.03834**
- JHEP 07 (2021) 176; **2105.14606**
- Symmetry 13 (2021) 4, 628; **2104.05133**
- Int. J. Mod. Phys. D 29 (2020) 11; **2041012**
- JHEP 07 (2020) 07, 205; **2005.04178**

D=3

- Phys. Lett. B 738 (2014) 134-135; 1405.6657
- Phys. Lett. B 735 (2014) 314-321; 1306.1247
- JHEP 04 (2012) 058; **1109.3944**
- Class. Quant. Grav. 39 245007, **2208.07897**