Supersymmetric extensions of the Standard Model

M. Maniatis

Cosmoconce Concepción 2013

M. Maniatis

Universidad del Bío-Bío

SUSY

SUSY	The MSSM	The NMSSM	Oblique parameters

Motivation for SUSY

The MSSM

The NMSSM

Oblique parameters

M. Maniatis

- Every fermion is paired with a boson and vice versa.
- ► SUSY is the invariance of the Lagrangian under $Q |boson\rangle = |fermion\rangle$, $Q |fermion\rangle = |boson\rangle$.
- Boson–fermion pairs build supermultiplets with same behavior under gauge groups.
- Non-gauge interactions are determined by one function, the superpotential.

SUSY	The MSSM	The NMSSM	Oblique parameters
0000			

Local SUSY connected to gravity.

• Unification of couplings at scale $m_{GUT} \approx 2 \times 10^{16}$ GeV.

 Lightest Supersymmetric Particle (LSP) candidate for dark matter.

Solution for the naturalness problem

SUSY	The MSSM	The NMSSM	Oblique parameters
0000			

In the SM we have one Higgs doublet.

$$H = \begin{pmatrix} H^+ \\ H^0 \end{pmatrix}$$

SM Higgs potential.

$$V = -m_H^2 (H^{\dagger} H) + \lambda (H^{\dagger} H)^2$$

 Spontaneously broken symmetry for m²_H > 0 and λ > 0,

$$\langle H \rangle = rac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}, \quad v = \sqrt{m_H^2/(2\lambda)}$$

► Electroweak data v ≈ 246 GeV. We expect m_H at electroweak scale.

SUSY	The MSSM	The NMSSM	Oblique parameters
0000			

- Quantum corrections to Higgs-boson mass:
- A fermion loop with $\mathcal{L} = -\lambda_f H \overline{f} f$ gives

$$\Delta m_H^2 = \frac{|\lambda_f|^2}{16\pi^2} \left[-2\Lambda_{UV}^2 + 6m_f^2 \ln(\Lambda_{UV}/m_f) + \dots \right]$$

• A scalar boson loop with $\mathcal{L} = -\lambda_{S}|H|^{2}|S|^{2}$

$$\Delta m_H^2 = \frac{\lambda_s}{16\pi^2} \left[\Lambda_{UV}^2 - 2m_S^2 \ln(\Lambda_{UV}/m_S) + \ldots \right]$$

- ► A fermion loop and two corresponding boson loops $\Delta m_H^2 = \frac{1}{8\pi^2} \left(\lambda_s |\lambda_f|^2 \right) \Lambda_{UV}^2 + \dots$
- For $\lambda_S \stackrel{!}{=} |\lambda_f|^2$ quadratic divergences cancel!

£

SUSY	The MSSM	The NMSSM	Oblique parameters
0000	●ooooooo	000000	
The MSSM			

- SM extended by minimal number of *superpartners*.
- Particle content, chiral- and gauge- supermultiplets

chiral supermultin	olets	spin-0	spin-1/2	$SU_C(3)$	$SU_L(2)$	$U_Y(1)$
quark-squark	\hat{Q}	$\tilde{Q} = (\tilde{u}_L, \ \tilde{d}_L)^{\mathrm{T}}$	$Q = (u_L, d_L)^{\mathrm{T}}$	3	2	1/6
	û	\tilde{u}_R^*	u_R^{\dagger}	3	1	-2/3
	â	\tilde{d}_R^*	d_R^{\dagger}	3	1	1/3
lepton-slepton	Ĺ	$\tilde{L} = (\tilde{\nu}_e, \tilde{e}_L)^T$	$L = (\nu_e, e_L)^T$	1	2	-1/2
	ê	\tilde{e}_R^*	e_R^{\dagger}	1	1	1
Higgs–Higgsino	\hat{H}_{u}	$H_u = (H_u^+, H_u^0)^{\mathrm{T}}$	$\tilde{H}_u = (\tilde{H}_u^+, \tilde{H}_u^0)^{\mathrm{T}}$	1	2	1/2
	\hat{H}_d	$H_d = (H_d^0, \ H_d^-)^{\mathrm{T}}$	$\tilde{H}_d = (\tilde{H}_d^0, \ \tilde{H}_d^-)^{\mathrm{T}}$	1	2	-1/2
gauge supermulti	plets	spin-1/2	spin-1	$SU_C(3)$	$SU_L(2)$	$U_Y(1)$
gluon–gluino		Ĩ	g	8	1	0
W-boson-wino		$\tilde{W}^{\pm}, \tilde{W}^{0}$	W^{\pm}, W^{0}	1	3	0
B-boson-bino		\tilde{B}^0	B^0	1	1	0

SUSY	The MSSM	The NMSSM	Oblique parameters
	000000		

Two Higgs doublets needed to give masses to up- and down-type fermions.

Two doublets

$$H_u = \begin{pmatrix} H_u^+ \\ H_u^0 \end{pmatrix} \qquad H_d = \begin{pmatrix} H_d^0 \\ H_d^- \end{pmatrix}$$

correspond after EWSB to physical Higgs bosons

 H_1, H_2, A, H^{\pm}

M. Maniatis

SUSY	The MSSM	The NMSSM	Oblique parameters
	000000		

The μ problem in the MSSM

MSSM superpotential

$$W = \hat{u}y_u\hat{Q}\hat{H}_u - \hat{d}y_d\hat{Q}\hat{H}_d - \hat{e}y_e\hat{L}\hat{H}_d + \mu\hat{H}_u\hat{H}_d$$

- The parameter μ has mass dimension.
- In the MSSM, μ has to be adjusted to EW scale before EWSB occurs.

SUSY	The MSSM	The NMSSM	Oblique parameters
	000000		

Lightest CP-even Higgs boson mass bound

$$m_{H_1}^2 < m_Z^2 \cos^2(2\beta)$$

With regard to LHC

$$m_{H_1} \approx 126 \text{ GeV}$$

Even taking quantum corrections into account

$$\Delta m_{H_1}^2 = c \frac{m_t^4}{v^2} \ln\left(\frac{m_{\tilde{t}_L} m_{\tilde{t}_R}}{m_t^2}\right)$$

very large masses $m_{\tilde{t}_{L/R}}$ required!

M. Maniatis

0000	0000000	000000	0000
SUSY	The MSSM	The NMSSM	Oblique parameters

Baryogenesis via EWPT

Absence of antimatter may be generated by strong EWPT.

V.A. Kuzmin, V.A. Rubakov, M.E. Shaposhnikov, PLB155, '85 M.E. Shaposhnikov, NPB287, '87

- Phase transitions are characterized by an order parameter which changes at a critical temperature T_c.
- First order electroweak phase transitions.

► Strong EWPT avoid a wash-out of generated baryon asymmetry. $\frac{v_c}{T_c} > \xi \approx 1$ M. Dine et al., PLB283, '92 M. Dine et al., PRD46, '92

SUSY	The MSSM	The NMSSM	Oblique parameters
	0000000		

Consider effective Higgs potential

$$V_{\rm eff} = m^2 \phi^2 - \alpha \phi^3 + \beta \phi^4$$

Degenerate minima with symmetry breaking minimum at v_c for

$$v_c = \frac{\alpha}{2\beta}$$

- Cubic α -term needed.
- ► In the SM only generically small loop contributions give a cubic term. The strong condition v_c/T_c > 1 translates to

$$m_H^{SM} < 32 \text{ GeV}$$

SUSY	The MSSM	The NMSSM	Oblique parameters
	000000		

Similar in MSSM: strong EWPT rely on loop contributions. It turns out this can only happen for J.M. Cline, G.D. Moore, PRL81, '98

M.S. Carena, M. Quiros, C.E.M. Wagner, PLB380, '96

$$m_{\tilde{t}_R} < m_t < < m_{\tilde{t}_L}$$

Unnatural mass hierarchy!

SUSY	The MSSM	The NMSSM	Oblique parameters
0000	0000000	●00000	
The NMSSM			

Additional Higgs singlet S.

P. Fayet, NPB90 '75 M. Dine, W. Fischler, M. Srednicki, PLB104, '81 H.P. Nilles, M. Srednicki, D. Wyler, PLB120, '83

For reviews see: M. Maniatis IJMPA, '10 or U. Ellwanger et al, PR496 '10

$$W_{\text{NMSSM}} = \hat{u}y_u\hat{Q}\hat{H}_u - \hat{d}y_d\hat{Q}\hat{H}_d - \hat{e}y_e\hat{L}\hat{H}_d + \lambda\hat{S}\hat{H}_u\hat{H}_d + \frac{1}{3}\kappa\hat{S}^3$$

- Spontaneous broken $\langle S \rangle = v_S$ gives required $\mu_{eff} = \lambda v_S$.
- κ term to avoid additional U(1)'.

SUSY 0000	The MSSM	The NMSSM ●00000	Oblique parameters
The NMSSM			

Additional Higgs singlet S.

P. Fayet, NPB90 '75 M. Dine, W. Fischler, M. Srednicki, PLB104, '81 H.P. Nilles, M. Srednicki, D. Wyler, PLB120, '83

For reviews see: M. Maniatis IJMPA, '10 or U. Ellwanger et al, PR496 '10

$$W_{\text{NMSSM}} = \hat{u}y_u\hat{Q}\hat{H}_u - \hat{d}y_d\hat{Q}\hat{H}_d - \hat{e}y_e\hat{L}\hat{H}_d + \lambda\hat{S}\hat{H}_u\hat{H}_d + \frac{1}{3}\kappa\hat{S}^3$$

- Spontaneous broken $\langle S \rangle = v_S$ gives required $\mu_{eff} = \lambda v_S$.
- κ term to avoid additional U(1)'.

SUSY	The MSSM	The NMSSM	Oblique parameters
0000	0000000	●00000	
The NMSSM			

Additional Higgs singlet S.

P. Fayet, NPB90 '75 M. Dine, W. Fischler, M. Srednicki, PLB104, '81 H.P. Nilles, M. Srednicki, D. Wyler, PLB120, '83

For reviews see: M. Maniatis IJMPA, '10 or U. Ellwanger et al, PR496 '10

$$W_{\text{NMSSM}} = \hat{u}y_u\hat{Q}\hat{H}_u - \hat{d}y_d\hat{Q}\hat{H}_d - \hat{e}y_e\hat{L}\hat{H}_d + \lambda\hat{S}\hat{H}_u\hat{H}_d + \frac{1}{3}\kappa\hat{S}^{i}$$

- Spontaneous broken $\langle S \rangle = v_S$ gives required $\mu_{eff} = \lambda v_S$.
- κ term to avoid additional U(1)'.

SUSY	The MSSM	The NMSSM	Oblique parameters
		00000	

Two doublets and one singlet

$$H_u = \begin{pmatrix} H_u^+ \\ H_u^0 \end{pmatrix}, \qquad H_d = \begin{pmatrix} H_d^0 \\ H_d^- \end{pmatrix}, \qquad S$$

correspond after EWSB to physical Higgs bosons

 $H_1, H_2, H_3, H_4, H_5, H^{\pm}.$

SUSY	The MSSM	The NMSSM	Oblique parameters
		00000	

> Particle content, chiral- and gauge- supermultiplets

chiral supermulti	plets	spin-0	spin-1/2	$SU_C(3)$	$SU_L(2)$	$U_Y(1)$
quark-squark	\hat{Q}	$\tilde{Q} = (\tilde{u}_L, \ \tilde{d}_L)^{\mathrm{T}}$	$Q = (u_L, d_L)^{\mathrm{T}}$	3	2	1/6
	û	\tilde{u}_R^*	u_R^{\dagger}	3	1	-2/3
	â	\tilde{d}_R^*	d_R^{\dagger}	3	1	1/3
lepton-slepton	Ĺ	$\tilde{L} = (\tilde{\nu}_e, \tilde{e}_L)^T$	$L = (\nu_e, e_L)^T$	1	2	-1/2
	ê	\tilde{e}_R^*	e_R^{\dagger}	1	1	1
Higgs–Higgsino	\hat{H}_{u}	$H_u = (H_u^+, H_u^0)^{\mathrm{T}}$	$\tilde{H}_u = (\tilde{H}_u^+, \tilde{H}_u^0)^T$	1	2	1/2
	\hat{H}_d	$H_d = (H_d^0, H_d^-)^{\mathrm{T}}$	$\tilde{H}_d = (\tilde{H}_d^0, \tilde{H}_d^-)^{\mathrm{T}}$	1	2	-1/2
	Ŝ	S	$ ilde{S}$	1	1	0
gauge supermulti	iplets	spin-1/2	spin-1	$SU_C(3)$	$SU_L(2)$	$U_Y(1)$
gluon–gluino		ĝ	g	8	1	0
W-boson-wino		$\tilde{W}^{\pm}, \tilde{W}^{0}$	W^{\pm}, W^{0}	1	3	0
B-boson-bino		\tilde{B}^0	B^0	1	1	0

SUSY	The MSSM	The NMSSM	Oblique parameters
		000000	

1 The NMSSM solves μ -problem.

$$W_{\text{NMSSM}} = \hat{u}y_u\hat{Q}\hat{H}_u - \hat{d}y_d\hat{Q}\hat{H}_d - \hat{e}y_e\hat{L}\hat{H}_d + \lambda\hat{S}\hat{H}_u\hat{H}_d + \frac{1}{3}\kappa\hat{S}^3$$

Spontaneous broken $\langle S \rangle = v_S$ gives required $\mu_{eff} = \lambda v_S$.

2 Lower upper mass bound in the NMSSM

$$(m_{H_1}^{\rm NMSSM})^2 < m_Z^2 \left(\cos^2(2\beta) + \frac{2\lambda^2 \sin^2(2\beta)}{g_1^2 + g_2^2}\right)$$

SUSY	The MSSM	The NMSSM	Oblique parameters
		000000	

3 EWPT possible in the NMSSM

Consider effective Higgs potential

$$V_{\rm eff} = m^2 \phi^2 - \alpha \phi^3 + \beta \phi^4$$

Degenerate minima with symmetry breaking minimum at v_c for

$$v_c = \frac{\alpha}{2\beta}$$

- Cubic α-term needed.
- We have cubic terms at tree level M. Pietroni, NPB402, '93

$$V_{\text{soft, trilinear}} = \lambda A_{\lambda} (H_u^{\mathrm{T}} \epsilon H_d) S + \frac{\kappa}{3} A_{\kappa} S^3 + c.c.$$

From parameter scans it is found

$$m_{H_1}^{
m NMSSM} < 170~{
m GeV}$$

SUSY	The MSSM	The NMSSM	Oblique parameters
		000000	

4 In general much less fine tuning

Quantification of fine tuning R. Barbieri, G.F. Giudice, NPB306, '88

Oblique parameters S, T, U

Confront NMSSM with EW precision measurements.

EW sector parameterized by 3 oblique parameters S, T, U under conditions:

M. E. Peskin, T. Takeuchi PRL65, '90 D. C. Kennedy, P. Langacker, PRL65, '90

- New model obeys $SU(2)_L \otimes U(1)_Y$ gauge symmetry.
- Couplings of new particles to light fermions suppressed.
- New physics enters far beyond EW scale

► Last condition may be dropped (*V*, *W*, *X*).

00000 000000 000000 00000	lique parameters	NMSSM	e MSSM	SUSY
	00			

Explicit expressions for S, T, U

$$\begin{split} S &= \frac{4s_W^2 c_W^2}{\alpha} \left[\frac{\Pi_{ZZ}(m_Z^2) - \Pi_{ZZ}(0)}{m_Z^2} - \frac{c_W^2 - s_W^2}{s_W c_W} \Pi'_{Z\gamma}(0) - \Pi'_{\gamma\gamma}(0) \right] \\ T &= \frac{1}{\alpha} \left[\frac{\Pi_{WW}(0)}{m_W^2} - \frac{\Pi_{ZZ}(0)}{m_Z^2} \right], \\ U &= \frac{4s_W^2}{\alpha} \left[\frac{\Pi_{WW}(m_W^2) - \Pi_{WW}(0)}{m_W^2} - c_W^2 \frac{\Pi_{ZZ}(m_Z^2) - \Pi_{ZZ}(0)}{m_Z^2} - 2s_W c_W \Pi'_{Z\gamma}(0) - s_W^2 \Pi'_{\gamma\gamma}(0) \right] \end{split}$$

with
$$\Pi_{G_1G_2}(s) = \Pi_{G_1G_2}^{new}(s) - \Pi_{G_1G_2}^{SM}(s)$$
 and $G_{1/2} \in \{\gamma, W, Z\}$

► EW Precision Measurements for *S*, *T*, *U* J. Beringer et al., PRD86 '12 $S = 0.01 \pm 0.1$, $T = 0.03 \pm 0.11$, $\rho = 0.87$.

JSY	The MSSM	The NMSSM	Oblique parameters
			0000

► Calculation of *S*, *T*, *U* (*V*, *W*, *X*) in the NMSSM

M. Maniatis, Y. Schröder, AHEP '13

SUSY	The MSSM	The NMSSM	Oblique parameters
			0000

• Enhancement of the $H \rightarrow \gamma \gamma$ channel observed.

CMS PAS HIG-12-015, '12

Supersymmetry is an appealing extension.

The MSSM in unsatisfactory.

The NMSSM could be realized by Nature!

Thank you very much for your attention!

- What are the consequences of the singlet \hat{S} ?
- After mixing, taking singlet \hat{S} into account.

bosons	gauge eigenstates	mass eigenstates	
sleptons	$ \begin{array}{c} \tilde{\tilde{e}}_L, \tilde{e}_R, \tilde{\nu}_e \\ \tilde{\mu}_L, \tilde{\mu}_R, \tilde{\nu}_\mu \\ \tilde{\tau}_L, \tilde{\tau}_R, \tilde{\nu}_\tau \end{array} $	$ \begin{array}{c} \tilde{e}_L, \tilde{e}_R, \tilde{\nu}_e \\ \tilde{\mu}_L, \tilde{\mu}_R, \tilde{\nu}_\mu \\ \tilde{\tau}_1, \tilde{\tau}_2, \tilde{\nu}_\tau \end{array} $	
squarks	$ \begin{split} \tilde{u}_L, \tilde{u}_R, \tilde{d}_L, \tilde{d}_R \\ \tilde{c}_L, \tilde{c}_R, \tilde{s}_L, \tilde{s}_R \\ \tilde{t}_L, \tilde{t}_R, \tilde{b}_L, \tilde{b}_R \end{split} $	$ \begin{array}{l} \tilde{u}_L, \tilde{u}_R, \tilde{d}_L, \tilde{d}_R \\ \tilde{c}_L, \tilde{c}_R, \tilde{s}_L, \tilde{s}_R \\ \tilde{t}_1, \tilde{t}_2, \tilde{b}_1, \tilde{b}_2 \end{array} $	
Higgs bosons	H_d^0, H_u^0, S	H_1, H_2, H_3, H_4, H_5 $(H_1, H_2, H_3, A_1, A_2)$	
	H_d^-, H_u^+	H^{\pm}	
fermions			
neutralinos	$\tilde{B}^0, \tilde{W}^0, \tilde{H}^0_u, \tilde{H}^0_d, \tilde{S}$	$\tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_3^0, \tilde{\chi}_4^0, \tilde{\chi}_5^0$	
charginos	$\tilde{W}^{\pm}, \tilde{H}_d^-, \tilde{H}_u^+$	$ ilde{\chi}_1^{\pm}$, $ ilde{\chi}_2^{\pm}$	
gluino	ĝ	ĝ	

• Enhancement of the $H \rightarrow \gamma \gamma$ channel observed.

CMS PAS HIG-12-015, '12

M. Maniatis

SUSY

Matter parity

- Most general superpotential W introduces lepton and baryon number violating terms.
- Matter parity/ R-parity $P_R = (-1)^{3(B-L)+2s}$,
- Consequences of *R*-parity
 - LSP stable.
 - Signatures of missing E_T
- ► SUSY breaking with L = L_{SUSY} + L_{soft}, Mass terms, couplings with positive mass dimension.
- ► Additional radiative corrections $\Delta m_{H}^{2} = m_{soft}^{2} \left[\frac{\lambda}{16\pi^{2}} \ln(\Lambda_{UV}/m_{soft}) + \ldots \right]$

Superpotential

All non-gauge interactions determined by one function W, the superpotential.

$$W = \frac{1}{2}\mu^{ij}\phi_i\phi_j + \frac{1}{6}\lambda^{ijk}\phi_i\phi_j\phi_k$$

$$\mathcal{L}_{\mathsf{chiral, int}} = -rac{1}{2} W^{ij} \psi_i \psi_j - W^i W_i + c.c.$$

with

$$W^{i} = \frac{\delta W}{\delta \phi_{i}} = \mu^{ij}\phi_{j} + \frac{1}{2}\lambda^{ijk}\phi_{j}\phi_{k} , \quad W^{ij} = \frac{\delta^{2}W}{\delta \phi_{i}\delta \phi_{j}} = \mu^{ij} + \lambda^{ijk}\phi_{k}$$

2002: "Establishing a No-Lose Theorem for NMSSM Higgs Boson Discovery at the LHC"

U. Ellwanger, J.F. Gunion, C. Hugonie, hep-ph/0111179

- 1) $gg \rightarrow H \rightarrow \gamma \gamma$,
- 2) WH or $t\bar{t}H$ production with $\gamma\gamma l^{\pm}$ in the final state,
- 3) $t\bar{t}H$ with $H \to b\bar{b}$,
- 4) $gg \rightarrow H/A$ or $b\bar{b}H/A$ production with $H/A \rightarrow \tau \bar{\tau}$,
- 5) $gg \to H \to ZZ^* \to 4$ leptons,
- 6) $gg \to H \to WW^* \to l^+ l^- \nu \bar{\nu}$,
- 7) at LEP2: $e^+e^- \rightarrow ZH$ and $e^+e^- \rightarrow HA$,
- 8) $WW \rightarrow H \rightarrow \tau \bar{\tau}$,
- 9) $WW \rightarrow H \rightarrow WW^*$,

with $H \in \{H_1, H_2, H_3\}$ and $A \in \{A_1, A_2\}$.

 Based on these channels, they state: At least one Higgs at 300 fb⁻¹ with 5-σ.

- ▶ But, certain decay channels are suppressed in their analysis: $H \rightarrow HH/AA/H^+H^-/AZ$, $A \rightarrow HA/HZ$, $H/A \rightarrow H^{\pm}W^{\mp}/t\bar{t}$, $t \rightarrow H^+b$.
- ▶ 2003: "Towards a no-lose theorem for NMSSM Higgs discovery at the LHC" U. Ellwanger, hep-ph/0305109
 Added channel WW → H → AA.

- ▶ 2005: "Difficult scenarios for NMSSM Higgs discovery at the LHC" U. Elwanger, J.F. Gunion, C. Hugonie, JHEP07, '05 Parameter scan with $m_{H^{\pm}} > 155$ GeV to suppress $t \to H^{\pm}b$, High universal soft-breaking masses.
- Sets not belonging not 1) 9) found, where no detection is possible.
- Example 1
 - Dominant BR $(H_2 \rightarrow H_1 H_1) = 0.93$
 - H_1 is mostly H^0_u -like and thus $H_1 \rightarrow b\bar{b}/\tau^+\tau^-$.
 - Therefore $WW \rightarrow H_2 \rightarrow 2j \tau^+ \tau^-$
 - $\blacktriangleright WW \to H_2 \to 4j$
- Example 2
 - Dominant BR $(H_1 \rightarrow A_1 A_1)$ with $m_{A_1} \approx 1$ GeV.

- 2008: "Reinstating the 'no-lose' theorem for NMSSM Higgs discovery at the LHC" J.R. Forshaw et al., JHEP04, '08 Additional assumption: absence of large fine-tuning.
- ► Quantification of fine-tuning R. Barbieri, G.F. Giudice, NPB306, '88 $\Delta^{\max} = \max_{a_i} \left| \frac{a_i}{m_Z^2(a_i)} \frac{d m_Z^2}{d a_i} \right| ,$ a_i denotes all soft-breaking parameters.
- ▶ Comparison of Δ^{\max} at $\tan(\beta) = 3$. M. Bastero-Gil et al., PLB489, '00

The fifth neutralino \tilde{S}

- One more neutralino in the NMSSM, the \tilde{S} .
- Mixing in the basis $\psi^0 = (\tilde{B}, \tilde{W}^3, \tilde{H}^0_d, \tilde{H}^0_u, \tilde{S})^{\mathrm{T}}$,

	(M_1)	0	$-c_{\beta}s_Wm_Z$	$s_{\beta}s_Wm_Z$	0
	0	M_2	$c_{\beta}c_{W}m_{Z}$	$-s_{\beta}c_W m_Z$	0
$M_{z0} =$	$-c_{\beta}s_Wm_Z$	$c_{\beta}c_{W}m_{Z}$	0	$-\lambda v_s/\sqrt{2}$	$-\lambda v_u/\sqrt{2}$
X	s _B s _W m _Z	$-s_{\beta}c_W m_Z$	$-\lambda v_s/\sqrt{2}$	0	$-\lambda v_d/\sqrt{2}$
	0	0	$-\lambda v_u/\sqrt{2}$	$-\lambda v_d/\sqrt{2}$	$\sqrt{2}\kappa v_s$)

- ► Mass eigenstates are ordered, m_{\[\tilde{\chi}_1^0\]} < ... < m_{\[\tilde{\chi}_5^0\]}.
- Detection of a fifth neutralino is clear signal for extension of MSSM.
- ► In case of small mixing of \tilde{S} with Higgsinos, \tilde{S} decouples, $m_{\tilde{s}}^2 \approx 2\kappa^2 v_s^2$.
- For large $m_{\tilde{S}}$, detection difficult.

SUSY Generators

 Possible forms of supersymmetry operators restricted by Haag-Lopuszanski-Sohnius extension of Coleman-Mandula theorem.

Coleman, Mandula, 1967; Haag, Lopuszanski, Sohnius, 1975

$$\begin{array}{rcl} \{Q_{a},\bar{Q}_{b}\} &=& 2\,\gamma_{ab}^{\mu}P_{\mu} \\ [P^{\mu},Q_{a}] &=& 0 \\ [M^{\mu\nu},Q_{a}] &=& -\Sigma_{ab}^{\mu\nu}\,Q_{b} \end{array}$$

- SUSY is connected to space-time TL.
- Q's transform as spinors under Lorentz TF.
- # bosonic d.o.f = # fermionic d.o.f

Measurement gives in addition a weaker bound in the NMSSM OPAL Coll., EPJC27, '03

$$m_{H_1}^{(\mathsf{N})\mathsf{MSSM, exp}} > 82~\mathsf{GeV}$$

Detection is based on b-tagging in SM/MSSM

K

- ▶ In NMSSM, new decay channels $H_1 \rightarrow A_1A_1$.
- In case of $m_{A_1} < 2m_b$, $A_1 \rightarrow b\overline{b}$, but $A_1 \rightarrow \tau^+ \tau^-/q\overline{q}$

• Upper limit on ratio $\xi^2 = \left(\frac{g_{HZZ}}{g_{HZZ}^{SM}}\right)^2$ depending on m_H .

► Excess may originate in NMSSM from $m_{H_1} \approx 98$ GeV BR $(H_1 \rightarrow b\bar{b}) \approx 0.08$ and BR $(H_1 \rightarrow A_1A_1) \approx 0.9$.

R. Dermisek, J.F. Gunion, PRL95, '05 R. Dermisek, J.F. Gunion, PRD73, '06