Agujeros de gusanos dinámicos soportados por energía fantasma politrópica

Sebastián Bahamonde Beltrán

Universidad de Concepción, Concepción.

COSMOCONCE 2013 Concepción, Marzo, 2013

Sebastián Bahamonde Agujeros de gusanos dinámicos soportados por energía fantasma

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Índice

2 Agujeros de gusanos dinámicos politrópicos

- Modelo
- Ecuaciones de campo y soluciones

イロト イポト イヨト イヨト

3

Introducción

Agujeros de gusanos dinámicos politrópicos Conclusiones

Concepto de Agujero de Gusano

Figura : Agujero de gusano

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Sebastián Bahamonde Agujeros de gusanos dinámicos soportados por energía fantasm

Introducción

Agujeros de gusanos dinámicos politrópicos Conclusiones

Concepto de Agujero de Gusano

Figura : Agujero de gusano

イロト イポト イヨト イヨト

Concepto de Agujero de Gusano

Es un hipotético túnel cósmico o atajo a través del espacio-tiempo, descrito como una solución de las ecuaciones de campo de Einstein. Teóricamente están constituidos por, al menos, dos extremos (bocas), conectados por una garganta, a través de la cual viajaría la materia, si éste pudiese ser atravesado.

Figura : Agujero de gusano

Concepto de Agujero de Gusano

Es un hipotético túnel cósmico o atajo a través del espacio-tiempo, descrito como una solución de las ecuaciones de campo de Einstein. Teóricamente están constituidos por, al menos, dos extremos (bocas), conectados por una garganta, a través de la cual viajaría la materia, si éste pudiese ser atravesado.

Figura : Agujero de gusano

Concepto de Agujero de Gusano

Es un hipotético túnel cósmico o atajo a través del espacio-tiempo, descrito como una solución de las ecuaciones de campo de Einstein. Teóricamente están constituidos por, al menos, dos extremos (bocas), conectados por una garganta, a través de la cual viajaría la materia, si éste pudiese ser atravesado.

Figura : Agujero de gusano

Concepto de Agujero de Gusano

Es un hipotético túnel cósmico o atajo a través del espacio-tiempo, descrito como una solución de las ecuaciones de campo de Einstein. Teóricamente están constituidos por, al menos, dos extremos (bocas), conectados por una garganta, a través de la cual viajaría la materia, si éste pudiese ser atravesado.

Figura : Agujero de gusano

Agujeros de Gusano Atravesables

- Son un tipo de agujero de gusano que para existir debe estar soportado por una fuente exótica de materia con presión negativa grande. (usualmente)
- Candidatos posibles para soportarlos son la materia fantasma o una constante cosmológica.
- Otra característica es que no poseen Horizontes($g_{tt} \neq 0$), permitiendo atraversalos en ambos sentidos.
- Pueden ser estáticos o dependientes del tiempo.

Agujeros de Gusano Atravesables

- Son un tipo de agujero de gusano que para existir debe estar soportado por una fuente exótica de materia con presión negativa grande. (usualmente)
- Candidatos posibles para soportarlos son la materia fantasma o una constante cosmológica.
- Otra característica es que no poseen Horizontes ($g_{tt} \neq 0$), permitiendo atraversalos en ambos sentidos.
- Pueden ser estáticos o dependientes del tiempo.

Agujeros de Gusano Atravesables

- Son un tipo de agujero de gusano que para existir debe estar soportado por una fuente exótica de materia con presión negativa grande. (usualmente)
- Candidatos posibles para soportarlos son la materia fantasma o una constante cosmológica.
- Otra característica es que no poseen Horizontes ($g_{tt} \neq 0$), permitiendo atraversalos en ambos sentidos.
- Pueden ser estáticos o dependientes del tiempo.

Agujeros de Gusano Atravesables

- Son un tipo de agujero de gusano que para existir debe estar soportado por una fuente exótica de materia con presión negativa grande. (usualmente)
- Candidatos posibles para soportarlos son la materia fantasma o una constante cosmológica.
- Otra característica es que no poseen Horizontes ($g_{tt} \neq 0$), permitiendo atraversalos en ambos sentidos.
- Pueden ser estáticos o dependientes del tiempo.

・ロト ・得 ト ・ヨト ・ヨト … ヨ

Introducción

Agujeros de gusanos dinámicos politrópicos Conclusiones

Agujero de Gusano intra-universo

Figura : Representación de un agujero de gusano intra-universo.

Sebastián Bahamonde Agujeros de gusanos dinámicos soportados por energía fantasm

Introducción

Agujeros de gusanos dinámicos politrópicos Conclusiones

Agujero de Gusano inter-universo

Figura : Representación de un agujero de gusano inter-universo.

Sebastián Bahamonde Agujeros de gusanos dinámicos soportados por energía fantasm

イロト イポト イヨト イヨト 二日

Relatividad General

En nuestra investigación utilizamos la Teoría General de la Relatividad, regida por las ecuaciones de campo de Einstein con constante cosmológica:

Ecuación de campo de Einstein

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \kappa T_{\mu\nu} - \Lambda g_{\mu\nu}, \qquad (1)$$

Con la signatura (-,+,+,+), la velocidad de la luz igual a la unidad (c=1) y $\kappa=8\pi G$

Modelo Ecuaciones de campo y soluciones

Índice

Agujeros de gusanos dinámicos politrópicos
 Modelo

Ecuaciones de campo y soluciones

3 Conclusiones

イロト イポト イヨト イヨト

э.

Modelo Ecuaciones de campo y soluciones

Modelo utilizado en nuestra investigación

Consideraremos que el agujero de gusano posee las siguientes características:

- Es dinámico.
- Se encuentra en un espacio de N dimensiones.
- Está soportado por materia inhomogéna y anisótropa, que está caracterizada por una ecuación de estado politrópica $p_r(r) = \omega \rho^{\gamma}$.
- No hay presencia de fuerzas de marea, es decir, $\Phi(r) = 0$

Modelo Ecuaciones de campo y soluciones

Modelo utilizado en nuestra investigación

Consideraremos que el agujero de gusano posee las siguientes características:

- Es dinámico.
- Se encuentra en un espacio de *N* dimensiones.
- Está soportado por materia inhomogéna y anisótropa, que está caracterizada por una ecuación de estado politrópica $p_r(r) = \omega \rho^{\gamma}$.
- No hay presencia de fuerzas de marea, es decir, $\Phi(r) = 0$

Modelo Ecuaciones de campo y soluciones

Modelo utilizado en nuestra investigación

Consideraremos que el agujero de gusano posee las siguientes características:

- Es dinámico.
- Se encuentra en un espacio de *N* dimensiones.
- Está soportado por materia inhomogéna y anisótropa, que está caracterizada por una ecuación de estado politrópica $p_r(r) = \omega \rho^{\gamma}$.
- No hay presencia de fuerzas de marea, es decir, $\Phi(r) = 0$

Modelo Ecuaciones de campo y soluciones

Modelo utilizado en nuestra investigación

Consideraremos que el agujero de gusano posee las siguientes características:

- Es dinámico.
- Se encuentra en un espacio de N dimensiones.
- Está soportado por materia inhomogéna y anisótropa, que está caracterizada por una ecuación de estado politrópica $p_r(r) = \omega \rho^{\gamma}$.
- No hay presencia de fuerzas de marea, es decir, $\Phi(r)=0$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Modelo Ecuaciones de campo y soluciones

Métrica de Morris & Thorne

 La métrica que describe el espacio-tiempo de un agujero de gusano estático está dado por la métrica de Morris y Thorne de Ref. [1]:

Métrica de Morris & Thorne

$$ds^{2} = -e^{\Phi(r)}dt^{2} + \frac{dr^{2}}{1 - \frac{b(r)}{r}} + d\Omega^{2},$$
(2)

donde $\Phi(r)$ es la función redshift, b(r) la función de forma y $d\Omega^2 = r^2(d\theta^2 + \sin\theta^2 d\phi^2) \operatorname{con} r, \theta, \phi$ las coordenadas esféricas y *t* la coordenada temporal.

Modelo Ecuaciones de campo y soluciones

Métrica de Morris & Thorne

 La métrica que describe el espacio-tiempo de un agujero de gusano estático está dado por la métrica de Morris y Thorne de Ref. [1]:

Métrica de Morris & Thorne

$$ds^{2} = -e^{\Phi(r)}dt^{2} + \frac{dr^{2}}{1 - \frac{b(r)}{r}} + d\Omega^{2},$$
 (2)

donde $\Phi(r)$ es la función redshift, b(r) la función de forma y $d\Omega^2 = r^2(d\theta^2 + \sin\theta^2 d\phi^2)$ con r, θ, ϕ las coordenadas esféricas y t la coordenada temporal.

Modelo Ecuaciones de campo y soluciones

Condiciones de transitabilidad

Para que el agujero de gusano sea atravesable $\Phi(r)$ y b(r) deben cumplir:

- Φ(r) debe ser finito en todo el espacio (ausencia de horizonte y singularidades).
- $b(r = r_0) = r_0$, en la garganta.
- $b(r)/r \leq 1$,
- Si r → ∞ entonces b(r)/r → 0 para obtener asintoticamente un espacio-tiempo Minkowskiano.

Modelo Ecuaciones de campo y soluciones

Condiciones de transitabilidad

Para que el agujero de gusano sea atravesable $\Phi(r)$ y b(r) deben cumplir:

- Φ(r) debe ser finito en todo el espacio (ausencia de horizonte y singularidades).
- $b(r = r_0) = r_0$, en la garganta.
- $b(r)/r \leq 1$,
- Si r → ∞ entonces b(r)/r → 0 para obtener asintoticamente un espacio-tiempo Minkowskiano.

Modelo Ecuaciones de campo y soluciones

Condiciones de transitabilidad

Para que el agujero de gusano sea atravesable $\Phi(r)$ y b(r) deben cumplir:

- Φ(r) debe ser finito en todo el espacio (ausencia de horizonte y singularidades).
- $b(r = r_0) = r_0$, en la garganta.
- $b(r)/r \leq 1$,
- Si r → ∞ entonces b(r)/r → 0 para obtener asintoticamente un espacio-tiempo Minkowskiano.

Modelo Ecuaciones de campo y soluciones

Condiciones de transitabilidad

Para que el agujero de gusano sea atravesable $\Phi(r)$ y b(r) deben cumplir:

- Φ(r) debe ser finito en todo el espacio (ausencia de horizonte y singularidades).
- $b(r = r_0) = r_0$, en la garganta.
- $b(r)/r \leq 1$,
- Si r → ∞ entonces b(r)/r → 0 para obtener asintoticamente un espacio-tiempo Minkowskiano.

Modelo Ecuaciones de campo y soluciones

Métrica de Morris & Thorne dinámica

 Para describir el espacio-tiempo de un agujero de gusano dinámico N dimensional debemos generalizar la métrica anterior a:

donde a(t) es el factor de escala del Universo. Si $\Phi(r,t) \rightarrow 0$ y $b(r) \rightarrow 0$ la métrica se transforma en la métrica de FRW plana N dimensional.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Modelo Ecuaciones de campo y soluciones

Métrica de Morris & Thorne dinámica

 Para describir el espacio-tiempo de un agujero de gusano dinámico N dimensional debemos generalizar la métrica anterior a:

Métrica generalizada

$$ds^{2} = -e^{-2\Phi(r,t)}dt^{2} + a^{2}(t)\left[\frac{dr^{2}}{1 - \frac{b(r)}{r}} + r^{2}d\Omega_{N-1}^{2}\right], \quad (3)$$

donde a(t) es el factor de escala del Universo. Si $\Phi(r,t) \rightarrow 0$ y $b(r) \rightarrow 0$ la métrica se transforma en la métrica de FRW plana N dimensional.

Modelo Ecuaciones de campo y soluciones

Métrica en término de las bases ortonormales

Podemos escribir la métrica anterior de la siguiente forma:

$$ds^{2} = -\theta^{(t)}\theta^{(t)} + \theta^{(r)}\theta^{(r)} + \sum_{i=1}^{N-1} \theta^{(\theta_{i})}\theta^{(\theta_{i})},$$
(4)

con $\theta^{(\mu)}$ las bases ortonormales de primera forma dadas por:

$$\theta^{(t)} = e^{\Phi(r,t)} dt, \tag{5}$$

$$\theta^{(r)} = a(t) \frac{dr}{\sqrt{1 - \frac{b(r)}{r}}},\tag{6}$$

$$\theta^{(\theta_1)} = a(t)rd_{\theta_1},\tag{7}$$

$$\theta^{(\theta_2)} = a(t)r\sin\theta_1 d_{\theta_2}, \tag{8}$$

$$\theta^{(\theta_{N-1})} = a(t)r \prod_{i=1}^{N-2} \sin \theta_i d\theta_{N-1}.$$
 (9)

▲御▶ ▲ ヨ▶ ▲ ヨ≯

Modelo Ecuaciones de campo y soluciones

Fuente de materia

- Consideraremos la fuente de materia descrita como un fluido inhomogéneo y anisótropo.
- El Tensor energía momentum en las bases ortonormales tendrá sólo componentes en la diagonal:

Tensor energía momentum

 $T_{(t)(t)} = \rho(t, r),$ $T_{(r)(r)} = p_r(t, r),$ $T_{(\theta)(\theta)} = T_{(\phi)(\phi)} = p_l(t, r),$

donde $p_r(r,t)$ y $p_l(r,t)$ son la presión radial y lateral respectivamente y $\rho(t,r)$ la densidad de energía de un fluido para un observador que se mantiene en resposo a $r, \theta^{(\mu)}$.

Modelo Ecuaciones de campo y soluciones

Fuente de materia

- Consideraremos la fuente de materia descrita como un fluido inhomogéneo y anisótropo.
- El Tensor energía momentum en las bases ortonormales tendrá sólo componentes en la diagonal:

sor energía momentum $$\begin{split} T_{(t)(t)} &= \rho(t,r), \ & (10)\\ T_{(r)(r)} &= p_r(t,r) \ & (11)\\ T_{(\theta)(\theta)} &= T_{(\phi)(\phi)} = p_l(t,r), \end{split}$$

donde $p_r(r,t)$ y $p_l(r,t)$ son la presión radial y lateral respectivamente y $\rho(t,r)$ la densidad de energía de un fluido para un observador que se mantiene en resposo a $r, \theta^{(\mu)}$.

Modelo Ecuaciones de campo y soluciones

Fuente de materia

- Consideraremos la fuente de materia descrita como un fluido inhomogéneo y anisótropo.
- El Tensor energía momentum en las bases ortonormales tendrá sólo componentes en la diagonal:

Tensor energía momentum

$$T_{(t)(t)} = \rho(t, r),$$
 (10)

$$T_{(r)(r)} = p_r(t, r)$$
 (11)

$$T_{(\theta)(\theta)} = T_{(\phi)(\phi)} = p_l(t, r),$$
 (12)

donde $p_r(r,t)$ y $p_l(r,t)$ son la presión radial y lateral respectivamente y $\rho(t,r)$ la densidad de energía de un fluido para un observador que se mantiene en resposo a $r, \theta^{(\mu)}$.

Modelo Ecuaciones de campo y soluciones

Fuente de materia

 Consideraremos que la densidad de energía puede separarse como:

$$\rho_r(t,r) = \rho_w(r)\rho_c(t). \tag{13}$$

 También consideraremos que la presión radial obedece una ecuación de estado politrópica de la siguiente forma:

$$p_r(t,r) = \omega \rho_c(t) \rho_w^{\gamma}(r), \qquad (14)$$

donde ω es el parámetro de estado y γ el índice politrópico.

 La ecuación anterior implica que la presión lateral se pueda dividir también como:

$$p_l(t,r) = p_{lc}(t)p_{lw}(r).$$
 (15)

イロト イポト イヨト イヨト

Modelo Ecuaciones de campo y soluciones

Fuente de materia

 Consideraremos que la densidad de energía puede separarse como:

$$\rho_r(t,r) = \rho_w(r)\rho_c(t).$$
(13)

 También consideraremos que la presión radial obedece una ecuación de estado politrópica de la siguiente forma:

$$p_r(t,r) = \omega \rho_c(t) \rho_w^{\gamma}(r),$$
 (14)

donde ω es el parámetro de estado y γ el índice politrópico.

 La ecuación anterior implica que la presión lateral se pueda dividir también como:

$$p_l(t,r) = p_{lc}(t)p_{lw}(r).$$
 (15)

イロン イボン イヨン イヨン 三日

Modelo Ecuaciones de campo y soluciones

Fuente de materia

 Consideraremos que la densidad de energía puede separarse como:

$$\rho_r(t,r) = \rho_w(r)\rho_c(t). \tag{13}$$

 También consideraremos que la presión radial obedece una ecuación de estado politrópica de la siguiente forma:

$$p_r(t,r) = \omega \rho_c(t) \rho_w^{\gamma}(r),$$
 (14)

donde ω es el parámetro de estado y γ el índice politrópico.

 La ecuación anterior implica que la presión lateral se pueda dividir también como:

$$p_l(t,r) = p_{lc}(t)p_{lw}(r).$$
 (15)

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト

э.

Modelo Ecuaciones de campo y soluciones

Índice

Agujeros de gusanos dinámicos politrópicos Modelo

Ecuaciones de campo y soluciones

3 Conclusiones

イロン イボン イヨン イヨン 三日

Modelo Ecuaciones de campo y soluciones

Ecuaciones de campo

Utilizando la condición $\Phi(r,t)=0,$ las ecuaciones de campo con constante cosmológica son

$$\frac{(N-1)}{2a^2r^3}[rb'(r) + (N-3)b(r)] + \frac{N(N-1)}{2}H^2 = \kappa\rho_w(r)\rho_c(t) + \Lambda,$$
(16)
$$(N-1)(N-2) = \alpha - \frac{\ddot{a}}{a}$$

$$\frac{(N-1)(N-2)}{2}H^2 - (N-1)\frac{a}{a} - (N-1)(N-2)\frac{b}{2r^3a^2} = \kappa\omega\rho_w^{\gamma}(r)\rho_c(t) - \Lambda,$$
 (17)

$$-\frac{(N-1)(N-2)}{2}H^2 - (N-1)\frac{\ddot{a}}{a} - \frac{(N-2)}{2r^3a^2}[rb'(r) + (N-4)b(r)] = \kappa p_{lw}(r)p_{lc}(t) - \Lambda,$$
(18)

donde $\kappa = 8\pi G$, $H = \dot{a}(t)/a(t)$ y las primas y los puntos denotan d/dr y d/dt respectivamente.

Modelo Ecuaciones de campo y soluciones

Ecuaciones de campo

 Separando las ecuaciones en su parte temporal y radial obtenemos

$$\left[\frac{N(N-1)}{2}H^2 - \Lambda\right]\rho_c^{-1}(t) = \kappa\rho_w(r) - \frac{(N-1)}{2a^2(t)\rho_c(t)r^3}[rb'(r) + (N-3)b(r)],$$
(19)

$$\left[\Lambda - \frac{(N-1)(N-2)}{2}H^2 - (N-1)\frac{a}{a}\right]\rho_c^{-1}(t) = \frac{b(r)(N-1)(N-2)}{2r^3\rho_c(t)a^2(t)} + \kappa\omega\rho_w^{\gamma}(r),$$
(20)

$$\left[\Lambda - \frac{(N-1)(N-2)}{2}H^2 - (N-1)\frac{\ddot{a}}{a}\right]p_{lc}^{-1}(t) = \frac{(N-2)(rb'(r) + (N-4)b(r))}{2r^3p_{lc}(t)a^2(t)} + \kappa p_{lw}(r).$$
(21)

Para que existan soluciones se debe cumplir

$$\rho_c(t) = \tilde{C}_1 a^{-2}(t), \ p_{lc}(t) = \tilde{C}_2 a^{-2}(t).$$
(22)

・ロト ・ 同 ト ・ 三 ト ・ 三 ト

Modelo Ecuaciones de campo y soluciones

Ecuaciones de campo

 Separando las ecuaciones en su parte temporal y radial obtenemos

$$\left[\frac{N(N-1)}{2}H^2 - \Lambda\right]\rho_c^{-1}(t) = \kappa\rho_w(r) - \frac{(N-1)}{2a^2(t)\rho_c(t)r^3}[rb'(r) + (N-3)b(r)],$$
(19)

$$\begin{bmatrix} \Lambda - \frac{(N-1)(N-2)}{2}H^2 - (N-1)\frac{\ddot{a}}{a} \end{bmatrix} \rho_c^{-1}(t) = \frac{b(r)(N-1)(N-2)}{2r^3\rho_c(t)a^2(t)} + \kappa\omega\rho_w^{\gamma}(r),$$
(20)

$$\begin{bmatrix} \Lambda - \frac{(N-1)(N-2)}{2} H^2 - (N-1) \frac{\ddot{a}}{a} \end{bmatrix} p_{lc}^{-1}(t) = \frac{(N-2)(rb'(r) + (N-4)b(r))}{2r^3 p_{lc}(t)a^2(t)} + \kappa p_{lw}(r).$$
(21)

Para que existan soluciones se debe cumplir

$$\rho_c(t) = \tilde{C}_1 a^{-2}(t), \ p_{lc}(t) = \tilde{C}_2 a^{-2}(t).$$
(22)

Modelo Ecuaciones de campo y soluciones

Ecuaciones de campo

Utilizando la condición anterior y el método de separación de variables obtenemos las ecuaciones separadas de t y r

$$\left[\frac{N(N-1)}{2}H^{2} - \Lambda\right]a^{2}(t) = \frac{\left[\left(N-1\right)\left(N-1\right)\left(N-2\right)}{2r^{3}}\left[rb'(r) + (N-3)b(r)\right] = -3C_{3}, \quad (23)\right]a^{2}(t) = \frac{b(r)(N-1)(N-2)}{2r^{3}}H^{2} - (N-1)\frac{\ddot{a}}{a}a^{2}(t) = \frac{b(r)(N-1)(N-2)}{2r^{3}} + \kappa\omega\tilde{C}_{1}\rho_{w}^{\gamma}(r) = -Q, \quad (24)$$
$$\left[\Lambda - \frac{(N-1)(N-2)}{2}H^{2} - (N-1)\frac{\ddot{a}}{a}a^{2}(t) = \frac{(N-2)(rb'(r) + (N-4)b(r))}{2r^{3}} + \kappa\tilde{C}_{2}p_{lw}(r) = -Q, \quad (25)$$

donde C_3 y Q son las constantes del método de separación de variables.

・ロト ・得 ト ・ヨト ・ヨト … ヨ

Modelo Ecuaciones de campo y soluciones

Soluciones

 Estudiando el caso en donde C₃ = Q = 0 encontramos las siguientes soluciones

Densidad de energía y presión radial

$$\rho(t,r) = \left(\frac{(N-2)r^{-N}}{-\omega\kappa}\right)^{1/\gamma} \left[F + \frac{(N-2)^{1/\gamma}}{N} \frac{\kappa^{\frac{(\gamma-1)}{\gamma}}}{(-\omega)^{1/\gamma}} r^{\frac{N(\gamma-1)}{\gamma}}\right]^{\frac{1}{(\gamma-1)}} a^{-2}(t), \quad (26)$$

$$p_r(t,r) = \omega \left(\frac{(N-2)r^{-N}}{-\omega\kappa}\right)^{1/\gamma} \left(\left[F + \frac{(N-2)^{1/\gamma}}{N} \frac{\kappa^{\frac{(\gamma-1)}{\gamma}}}{(-\omega)^{1/\gamma}} r^{\frac{N(\gamma-1)}{\gamma}}\right]^{\frac{1}{(\gamma-1)}}\right)^{\gamma} a^{-2}(t). \quad (27)$$

Sebastián Bahamonde Agujeros de gusanos dinámicos soportados por energía fantasm

Modelo Ecuaciones de campo y soluciones

Soluciones

• Estudiando el caso en donde $C_3 = Q = 0$ encontramos las siguientes soluciones

Densidad de energía y presión radial

$$\rho(t,r) = \left(\frac{(N-2)r^{-N}}{-\omega\kappa}\right)^{1/\gamma} \left[F + \frac{(N-2)^{1/\gamma}}{N} \frac{\kappa^{\frac{(\gamma-1)}{\gamma}}}{(-\omega)^{1/\gamma}} r^{\frac{N(\gamma-1)}{\gamma}}\right]^{\frac{1}{(\gamma-1)}} a^{-2}(t), \quad (26)$$

$$p_r(t,r) = \omega \left(\frac{(N-2)r^{-N}}{-\omega\kappa}\right)^{1/\gamma} \left(\left[F + \frac{(N-2)^{1/\gamma}}{N} \frac{\kappa^{\frac{(\gamma-1)}{\gamma}}}{(-\omega)^{1/\gamma}} r^{\frac{N(\gamma-1)}{\gamma}}\right]^{\frac{1}{(\gamma-1)}}\right)^{\gamma} a^{-2}(t). \quad (27)$$

Sebastián Bahamonde Agujeros de gusanos dinámicos soportados por energía fantasr

Modelo Ecuaciones de campo y soluciones

Soluciones

Presion lateral y función de forma

$$p_{l}(t,r) = \frac{(N-2)r^{-N}}{(N-1)\kappa} \left(F + \frac{(N-2)^{1/\gamma}}{N} \frac{\kappa^{\frac{(\gamma-1)}{\gamma}}}{(-\omega)^{1/\gamma}} r^{\frac{N(\gamma-1)}{\gamma}} \right)^{\frac{\gamma}{(\gamma-1)}} \\ \times \left[\left(F + \frac{(N-2)^{1/\gamma}}{N} \frac{\kappa^{\frac{(\gamma-1)}{\gamma}}}{(-\omega)^{1/\gamma}} r^{\frac{N(\gamma-1)}{\gamma}} \right) - \frac{(N-2)^{1/\gamma}\kappa^{\frac{(\gamma-1)}{\gamma}}r^{\frac{N(\gamma-1)}{\gamma}}}{(-\omega)^{1/\gamma}} \right] a^{-2}(t),$$
(28)
$$b(r) = \frac{2r^{3-N}}{N-1} \left[F + \frac{(N-2)^{1/\gamma}}{N} \frac{(\kappa\tilde{C}_{1})^{\frac{(\gamma-1)}{\gamma}}}{(-\omega)^{1/\gamma}} r^{\frac{N(\gamma-1)}{\gamma}} \right]^{\frac{\gamma}{(\gamma-1)}},$$
(29)

donde *F* es una constante de integración.

Sebastián Bahamonde

Agujeros de gusanos dinámicos soportados por energía fantasma

► < Ξ >

Modelo Ecuaciones de campo y soluciones

Para la parte dinámica encontramos que el factor de escala (con $C_3 = Q = 0$) está dado por:

que corresponde a un Universo de De-Sitter N dimensional con el signo + y un universo anti de-Sitter N dimensional con el signo -.

Modelo Ecuaciones de campo y soluciones

Condiciones para agujero de gusano atravesable

• Como hemos elegido $\Phi(r,t) = 0$ no hay problema con singularidades ni horizonte.

Imponiendo que en la garganta $b(r = r_0) = r_0$ obtenemos:

Modelo Ecuaciones de campo y soluciones

Condiciones para agujero de gusano atravesable

- Como hemos elegido $\Phi(r,t) = 0$ no hay problema con singularidades ni horizonte.
- Imponiendo que en la garganta $b(r = r_0) = r_0$ obtenemos:

Función de forma con condición de garganta

$$b(r) = \frac{2r^{3-N}}{N-1} \Big[r_0^{\frac{(N-2)(\gamma-1)}{\gamma}} - \frac{(\kappa \tilde{C}_1)^{\frac{(\gamma-1)}{\gamma}}(N-2)^{1/\gamma}}{N(-\omega)^{1/\gamma}} \Big(r_0^{\frac{N(\gamma-1)}{\gamma}} + r^{\frac{N(\gamma-1)}{\gamma}} \Big) \Big]^{\frac{\gamma}{(\gamma-1)}}.$$
(31)

 Si hacemos el caso N = 3 recuperamos el caso de agujero de gusano de Ref. [2].

Modelo Ecuaciones de campo y soluciones

Condiciones para agujero de gusano atravesable

- Como hemos elegido $\Phi(r,t) = 0$ no hay problema con singularidades ni horizonte.
- Imponiendo que en la garganta $b(r = r_0) = r_0$ obtenemos:

Función de forma con condición de garganta

$$b(r) = \frac{2r^{3-N}}{N-1} \Big[r_0^{\frac{(N-2)(\gamma-1)}{\gamma}} - \frac{(\kappa \tilde{C}_1)^{\frac{(\gamma-1)}{\gamma}} (N-2)^{1/\gamma}}{N(-\omega)^{1/\gamma}} \Big(r_0^{\frac{N(\gamma-1)}{\gamma}} + r^{\frac{N(\gamma-1)}{\gamma}} \Big) \Big]^{\frac{\gamma}{(\gamma-1)}}.$$
(31)

 Si hacemos el caso N = 3 recuperamos el caso de agujero de gusano de Ref. [2].

Modelo Ecuaciones de campo y soluciones

Condiciones para agujero de gusano atravesable

- Como hemos elegido $\Phi(r,t) = 0$ no hay problema con singularidades ni horizonte.
- Imponiendo que en la garganta $b(r = r_0) = r_0$ obtenemos:

Función de forma con condición de garganta

$$b(r) = \frac{2r^{3-N}}{N-1} \Big[r_0^{\frac{(N-2)(\gamma-1)}{\gamma}} - \frac{(\kappa \tilde{C}_1)^{\frac{(\gamma-1)}{\gamma}} (N-2)^{1/\gamma}}{N(-\omega)^{1/\gamma}} \Big(r_0^{\frac{N(\gamma-1)}{\gamma}} + r^{\frac{N(\gamma-1)}{\gamma}} \Big) \Big]^{\frac{\gamma}{(\gamma-1)}}.$$
(31)

• Si hacemos el caso N = 3 recuperamos el caso de agujero de gusano de Ref. [2].

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusiones

- Hemos modelado la fuente que soporta nuestro agujero de gusano como un fluido politrópico, inhomogéneo y anisótropo.
- Encontramos soluciones politrópicas, las cuáles son poco usuales en Relatividad General.
- Hemos generalizado la solución de la Ref [2], encontrando una solución para un agujero de gusano dinámico.
- También generalizamos la solución de Ref [2] para un espacio *N* dimensional.

イロト 不得 トイヨト イヨト ニヨー

Conclusiones

- Hemos modelado la fuente que soporta nuestro agujero de gusano como un fluido politrópico, inhomogéneo y anisótropo.
- Encontramos soluciones politrópicas, las cuáles son poco usuales en Relatividad General.
- Hemos generalizado la solución de la Ref [2], encontrando una solución para un agujero de gusano dinámico.
- También generalizamos la solución de Ref [2] para un espacio *N* dimensional.

(ロ) (同) (三) (三) (三) (○) (○)

Conclusiones

- Hemos modelado la fuente que soporta nuestro agujero de gusano como un fluido politrópico, inhomogéneo y anisótropo.
- Encontramos soluciones politrópicas, las cuáles son poco usuales en Relatividad General.
- Hemos generalizado la solución de la Ref [2], encontrando una solución para un agujero de gusano dinámico.
- También generalizamos la solución de Ref [2] para un espacio *N* dimensional.

Conclusiones

- Hemos modelado la fuente que soporta nuestro agujero de gusano como un fluido politrópico, inhomogéneo y anisótropo.
- Encontramos soluciones politrópicas, las cuáles son poco usuales en Relatividad General.
- Hemos generalizado la solución de la Ref [2], encontrando una solución para un agujero de gusano dinámico.
- También generalizamos la solución de Ref [2] para un espacio *N* dimensional.

Realización de la investigación

Esta investigación fue realizada como un trabajo en conjunto con:

- Dr. Mauricio Cataldo.
- Fernanda Aróstica.

イロン イボン イヨン イヨン 三日

Realización de la investigación

Esta investigación fue realizada como un trabajo en conjunto con:

- Dr. Mauricio Cataldo.
- Fernanda Aróstica.

イロト イポト イヨト イヨト

э.

Referencias

Evolving Lorentzian wormholes supported by phantom matter and cosmological M. Cataldo et al., Phys. Rev. D **79** , 024005 (2009)

Referencias

- Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity. M.S. Morris, K.S. Thorne, Am. J. Phys. 56, 395 (1988)
- Wormholes supported by polytropic phantom energy M. Jamil et al, Eur. Phys. J. C 67, 513 (2010)
- Evolving Lorentzian wormholes supported by phantom matter and cosmological M. Cataldo et al., Phys. Rev. D **79**, 024005 (2009)

・ロト ・得 ト ・ヨト ・ヨト … ヨ

Referencias

- Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity. M.S. Morris, K.S. Thorne, Am. J. Phys. 56, 395 (1988)
- Wormholes supported by polytropic phantom energy M. Jamil et al, Eur. Phys. J. C 67, 513 (2010)

Evolving Lorentzian wormholes supported by phantom matter and cosmological M. Cataldo et al., Phys. Rev. D 79 , 024005 (2009)

・ロト ・得 ト ・ヨト ・ヨト … ヨ