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In general, the equations of motion in physics are at most of second order
in the time derivatives.

For example, they come from the Lagrangians:

scalars

L = ∂µφ
†∂µφ−mφ†φ

fermions

L = ψ̄(i∂/−m)ψ,

gauge fields

L = − 1
4FµνF

µν

gravity

L =
√
gR
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However, one could ask if it is possible or makes sense to extend these
theories in order to contain more time derivatives, such that the
Lagrangian turns out to be

L = L(x , ẋ , ẍ , . . . , x (n)). (1)

Ostrogradski studied these kind of theories long time ago, and developed
a Hamiltonian framework in order to deal with them. [M. Ostrogradski, Mem. Acad.

St. -Pétersbourg VI, 385 (1850)]

The only requirement is not having constraints in which case one can
recover a standard order theory. M.S. Plyushchay: Mod. Phys. Lett. A4, 837 (1989)]

It was shown, however, that higher order theories have unbounded energy.
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The Pais-Uhlenbeck model
[A. Pais and G. E. Uhlenbeck, Phys. Rev. 79, 145 (1950)]

The P-U oscillator is, basically, the standard harmonic oscillator with an
additional higher time derivative term. To be more precise its equation of
motion is

gq(4) + q̈ + ω2q = 0, (2)

where q(4) is a fourth order time derivative and g can be considered a
small coupling constant. The equation of motion is obtained from the
Lagrangian:

LPU = −g

2
q̈2 +

1

2
q̇2 − 1

2
ω2q2. (3)

Unitariedad
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The Pais-Uhlenbeck model

This system can be seen as two standard harmonic oscillators by means
of the change of variables,

q+ = (∂2t − k2
−)q,

q− = (∂2t − k2
+)q. (4)

The Lagrangian with the new variables is

LPU =

(
1

2
q̇2+ − 1

2
k2
+q

2
+

)
−
(
1

2
q̇2− +

1

2
k2
−q

2
−

)
, (5)

with k2
± = 1

2g (1±
√

1− 4gω2).

Unitariedad
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The Pais-Uhlenbeck model

Following the canonical formalism we write the Hamiltonian as:

ĤPU = k−â
†
+â+ − k+â

†
−â− +

1

2
(k− − k+), (6)

where â+, â
†
+, â−, â

†
− are the standard creation and annihilation

operators. The second term produces arbitrary negative energy states as
can be seen by acting â

†
− on the empty wave function (defined by

â+Φ0 = â−Φ0 = 0)

Φ0 = N exp

[
−
√

1− 4gω2

2(k+ + k−)
(k+k−q

2 + q̇2) +
√

−gω2qq̇

]
. (7)

An alternative proposal to quantize would be to redefine the vacuum

âΦ′
0 = â

†
−Φ

′
0 = 0 which stabilizes the theory but it could spoil unitarity

when interactions are introduced.

Unitariedad
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Summarizing:

Extra degrees of freedom

The Lagrangian corresponds to two standard harmonic oscillators with
one of them having a relative minus sign respect to the other.

Instabilities

Classically, when adding interactions the system becomes unstable due to
the unboundedness of the energy.

Swapping problems: stability for unitarity

However, by a redefinition of the vacuum state, the quantum mechanical
problem becomes stable. This last procedure leads to unavoidable
negative norm states. These ghosts states could render the theory non
unitary when interaction are considered.
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Quantum field theories

In field theory, higher order operators result attractive since they can
soften the ultraviolet divergences. [B. Podolsky, Phys. Rev. 62, 68 (1942).].

Recently, higher-order operators have become object of intense study in
the description of Lorentz invariance violation. [R. C. Myers and M. Pospelov, Phys.

Rev. Lett. 90 (2003) 211601; V. A. Kostelecky and M. Mewes, Phys. Rev. D 80, 015020 (2009); A. Kostelecky and

M. Mewes, Phys. Rev. D 85, 096005 (2012).]

In this way, they have come to contribute to the phenomenology
contained in the extensions of the standard model using normal
dimension operators (four dimensions and below) . However, the
modifications they introduce are substantially different.
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Lee-Wick theories

A Lee-Wick model is a covariant field theory that incorporates higher
time derivatives. For example, the Lagrangian

L = ψ̄(i /∂ −m)ψ − g

Λ
ψ̄�ψ, (8)

where g is a dimensionless positive coupling constant and Λ is an
ultraviolet energy scale.
One can proceed as before by defining the new fields

ψ+ = β(i∂/+m−)ψ,

ψ− = β(i∂/−m+)ψ, (9)

with β =
(

g/Λ
m++m

−

) 1
2

and

m± =
∓1 +

√
1 + 4g m

Λ

2g
Λ, (10)

Unitariedad
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Lee-Wick model

the Lagrangian (8) can be written in terms of these fields as,

L = ψ̄+(i∂/−m+)ψ+ − ψ̄−(i∂/+m−)ψ−. (11)

Here we have written a higher time derivative theory in terms of to two
decoupled standard fermions. However, the second mode has the wrong
sign in fronts of its Lagrangian density.
The non vanishing anticommutators will be

{ψα
+(~x , t), ψ

†β
+ (~y , t)} = −{ψα

−(~x , t), ψ
†β
− (~y , t)}

= δαβδ3(~x − ~y). (12)

Note that the minus sign of the anticommutators of the minus fields is

responsible for the negative norm states.

Unitariedad
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Lee-Wick model

Now, decomposing the new fields in terms of plane wave solutions we find

ψ+(~x , t) =
∑

s

∫
d3p

(2π)3
1√
2E+

(13)

×
[
bs+(p)e

−ip+·xus+(p) + d
s†
+ (p)e ip+·xv s

+(p)
]
,

ψ−(~x , t) =
∑

s

∫
d3p

(2π)3
1√
2E−

(14)

×
[
bs−(p)e

−ip
−
·xus−(p) + d

s†
− (p)e ip−·xv s

−(p)
]
.

where p± = (ω±, ~p) and E± =
√
~p2 +m2

± and u, v are the eigenpinors

satisfying the orthogonality relations

u
†s
± ur± = v

†s
± v r

± = 2E±δ
sr , (15)
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Lee-Wick model

The Hamiltonian of the theory can be written in terms of the standard
creation and annihilation operators for the fields ψ± as

H =
∑

s

∫
d3p

(
E+(b

s†
+ (~p)bs+(~p) + d

s†
+ (~p)d s

+(~p))

+E−(b
s†
− (~p)bs−(~p) + d

s†
− (~p)d s

−(~p))
)
, (16)

and,

{bs±(~p), br†± (~k)} = ±(2π)3δsrδ3(~p − ~k),

{d s
±(~p), d

r†
± (~k)} = ±(2π)3δsrδ3(~p − ~k), (17)

are the nonvanishing anticommutators of creation and annihilation
operators for particles (b) and antiparticles (d) of spin s and r . Here is
evident the positivity of the energy spectrum and the indefiniteness of
Fock space.
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Summarizing again

The theory doubles the number of modes, the new modes correspond to
negative norm states, and the theory can always be defined with positive
energies.

[T. D. Lee and G. C. Wick, Nucl. Phys. B 9, 209 (1969); T. D. Lee, G. C. Wick, Phys. Rev. D2, 1033-1048 (1970)

By introducing interactions the wrong sign may cause the loss of
unitarity. However, it has been shown that with a suitable prescription for
the propagators it is possible to maintain unitarity controlled.

[ R. E. Cutkosky, P. V. Landshoff, D. I. Olive, J. C. Polkinghorne, Nucl. Phys. B12, 281-300 (1969). ]

Despite unitarity is kept, causality is lost in a microscopic scale, as it can
be seen in the occurrence of negative decay rates..
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The photon Myers-Pospelov model

The Myers-Pospelov Lagrangian density for photons is given by

L = −1

4
FµνFµν − ξ

2MP

nµǫ
µνλσAν(n · ∂)2Fλσ, (18)

where n is a four-vector defining a preferred reference frame, MP is the
Planck mass and ξ is a dimensionless parameter.
The equations of motion derived from the Lagrangian (18) are

∂µF
µν + gǫναλσnα(n · ∂)2Fλσ = 4πjν , (19)

where we have introduced a source jν and defined g = ξ/MP .

Unitariedad
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The photon Myers-Pospelov model

In terms of the physical fields

~E = −∂
~A

∂t
−∇A0, (20)

~B = ∇× ~A, (21)

we can rewrite Eq.(19) as

∇ · ~E + 2g(n · ∂)2(~n · ~B) = 4πρ,

−∂
~E

∂t
+∇× ~B + 2g(n · ∂)2(n0~B − (~n × ~E )) = 4π~j ,

(22)

together with the usual identities

∇ · ~B = 0,

∇× ~E +
∂~B

∂t
= 0. (23)

Unitariedad
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Polarization vectors and dispersion relation

To start, let us consider the two-dimensional hyperplane orthogonal to kµ

and nµ

eµν = ηµν − (n · k)
D

(nµkν + nµkν) +
k2

D
nµnν +

n2

D
kµkν ,

(24)

where

D(k , n) = (n · k)2 − n2k2. (25)

We note that the tensor eµν is an orthogonal projector, for instance it

reduces well to the transverse delta δTij = δij − kikj

|~k|2
when the preferred

four-vector has only a temporal component. Also, by direct calculation it
can be checked that eµνnν = eµνkν = 0.

Unitariedad
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Polarization vectors and dispersion relation

Let us introduce the quantity

ǫµν = D−1/2ǫµαρνnαkρ, (26)

having the property

ǫµαǫνα = eµν , (27)

and

ǫµα = eναǫµα. (28)

Now, any vector Jµ can be written in terms of its ± components. These
are,

J(±)
µ = P(±)

µν Jν ,

(29)

where we define the orthogonal projector

P(±)
µν =

1

2
(eµν ± iǫµν). (30)

Unitariedad
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Polarization vectors and dispersion relation

In the frame of the hyperplane we can always select a basis consisting of

two real orthonormal four-vectors e
(a)
µ such that

eµν = −
∑

a=1,2

e(a)µ e(b)ν ,

ηµνe(a)µ e(b)ν = −δab, (31)

and the associated complex polarized four-vectors basis

ε(λ)µ = P(λ)
µν e

(a)
µ =

1

2
(e(1)µ + iλ e(2)µ ), (32)

where λ = ±. To find the dispersion relation let us consider the gauge
field in the circular base. Namely,

Aµ(x) =
∑

λ

∫
d3k

(
Ã(λ)(k)ε(λ)µ (k)e−ik·x + Ã(λ)∗(k)ε∗(λ)µ (k)e ik·x

)
.

(33)

Unitariedad
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Polarization vectors and dispersion relation

which by substitution in the equation of motion produces the two
expressions

(G (+))−1Ã(+) ≡ (k2 + 2g(n · k)2
√
D)Ã(+) = 4πj+,

(G (−))−1Ã(−) ≡ (k2 − 2g(n · k)2
√
D)Ã(−) = 4πj−.

(34)

Solving the determinant the dispersion relation reads

G = (k2)2 − 4g2(n · k)4
(
(n · k)2 − n2k2

)
= 0, (35)

in agreement with the work [C. M. Reyes, L. F. Urrutia, J. D. Vergara, Phys. Rev. D78, 125011

(2008); C. M. Reyes, L. F. Urrutia and J. D. Vergara, Phys. Lett. B 675, 336 (2009).]

.
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Minimal extension

There are two possible ways to obtain a standard time derivative theory
and still have dimension five operators. The first one is to consider a
purely timelike four-vector n = (1, 0, 0, 0), for which the positive solutions
are

ω
(λ)
T =

|~k |√
1 + 2gλ|~k |

, (36)

where λ labels the circular polarization vectors introduced before. It is

clear that the solution ω(−) remains real only in the region defined by

|~k | < 1/(2g). For higher momenta the negative mode becomes complex

introducing instabilities in the theory.

Unitariedad
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Minimal extension

The second alternative is to consider a purely spacetime background. In
this case the dispersion relations reads

ω
(λ)
S =

(
k2 + 2g2(n · k)4

+λ (n · k)3 (1 + g2~n4(~n · ~k)2)1/2
)1/2

.

(37)

When the vector n pick ups both a time and space components, then the
theory is a higher order theory. For example for a lightlike n we have from
the dispersion relation

(G (λ))−1 = ω2 − ~k2 + 2gλ(n0ω − ~n · ~k)3 = 0. (38)
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Higher order theory

Without loss of generality we can consider n = (1, 0, 0, 1) in which case
the exact solutions are

ω
(λ)
0 = −1− 6gλkz

6gλ
− −1 + 12gλkz

3× 22/3gλ∆(λ )
+

∆(λ )

6× 21/3gλ
, (39)

ω
(λ)
1 = −1− 6gλkz

6gλ
+

(1 + i
√
3)(−1 + 12gλkz)

6× 22/3gλ∆(λ )
− (1− i

√
3)∆(λ )

12× 21/3gλ
,

ω
(λ)
2 = −1− 6gλkz

6gλ
+

(1− i
√
3)(−1 + 12gλkz)

6× 22/3gλ∆(λ )
− (1 + i

√
3)∆(λ )

12× 21/3gλ
,

where

∆(λ ) =
(
−2 + 108g2~k2 + 36gλkz − 108g2k2

z

+

√
(−2 + 108g2~k2 + 36gλkz − 108g2k2

z )
2 + 4(−1 + 12gλkz)3

)1/3

.
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Unitarity

In order to review the optical theorem let us consider the S-matrix

S = 1 + iT . (40)

Unitarity of the S-matrix, implies the equation

−i(T − T †) = T †T . (41)

Taking the matrix elements of the above equation, we must show that

2 ImM(in → out) =
∑

f

∫
dΠfM∗(out → f )M(in → f ),

(42)

where the sum runs over all possible final-state particles allowed by
energy and momentum conservation. Any violation of unitarity will show
up as a contradiction of equation (42).
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Unitarity

We will consider the modified QED Lagrangian

L = ψ̄(i∂/−m)ψ − 1

4
FµνFµν − g

2
nµǫ

µνλσAν(n · ∂)2Fλσ − eψ̄γµAµψ,

and now we will check unitarity by means of the optical theorem

Figura : In-out diagrams for electron-positron scattering to order e2. The
first diagram corresponds to perturbative fields and the other to the
ghost field
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Unitarity

Therefore, let us consider the amplitude

A = (−ie)2ū(p1)γ
µv(p2)v̄(p2)γ

νu(p1)Gµν(k), (43)

where the photon propagator is

Gµν(k) =
∑

λ

P(λ)
µν G

(λ). (44)

And we have to compare with

Figura : Physical vertex diagrams to order e2 for the perturbative and
ghost photon fields
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Unitarity

We must show that
2Im[A] = B†B

Hence, let us start with A

∫
d4k

(2π)4
δ(p1 + p2 − k)A =

∑

λ

∫
dk0

(2π)

∫
d3~k

(2π)3
δ(p1 + p2 − k)

×(−ie)2ū(p1)γ
µv(p2)v̄(p2)γ

νu(p1)P
(λ)
µν

1

k2 + 2gλ(n · k)3 . (45)
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For the imaginary part only the propagator poles contribute. We can
replace the denominator in the the above expression by

1

k2 + 2gλ(n · k)3 → δ(f (ωλ)) ≡ δ(k2 + 2gλ(n · k)3) (46)

Hence

2Im[A] =
∑

λ

∫
d3k

(2π)3
δ(p1 + p2 − k)

×(−ie)2ū(p1)γ
µv(p2)v̄(p2)γ

νu(p1)P
(λ)
µν

1

f ′(ω
(λ)
1 )

. (47)

We are interested in the regions of energy for the electrons and positrons
where the effective theory is valid and therefore by energy conservation
we have excluded the ghost contribution.
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On the other hand, since we are excluding ghost fields to be stable and
asymptotic states the second diagram of B do not contribute.
With the correct normalization for the polarization sum, that is the one
considered in the field expansion

Aµ(x) =
∑

λ

∫
d4x ελµ δ(k

2 + 2gλ(n · k)3)e−ik·x

we have

2Im[A] =
∑

λ

∫
d3k

(2π)3
δ(p1 + p2 − k)Mµ†P(λ)

µν M
ν 1

f ′(ω
(λ)
1 )

=

∫
d3k

(2π)3
δ(p1 + p2 − k)Mµ†Mν

∑

λ

ελ∗µ ελν

=

∫
d3k

(2π)3
δ(p1 + p2 − k)B†B (48)
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Conclusions

We have shown that for special choices of the background n the
theory can be maintained of standard derivative theory.

We have proved unitarity at tree level in the higher derivative sector
of the M-P model

Next work should be to analyze unitarity at one loop. We believe
that the Cutkosky prescription can be implemented but a correct iǫ
prescription for the propagators needs to be determined.
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