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Lovelock’s theorem

Lovelock’s theorem [Lovelock, 1971, Lovelock, 1972] limits the theories that one can
construct from the metric tensor alone.

Assuming that the metric tensor is the only field involved in the gravitational action.
If the action can be written in terms of the metric tensor gµν alone, then we can
write

S =

∫

d4xL(gµν). (1)

containing up to second derivatives of gµν ,

Extremising it with respect to the metric gives the Euler-Lagrange expression

Eµν [L] = d

dxρ

[

∂L
∂gµν,ρ

− d

dxλ

(

∂L
∂gµν,ρλ

)]

− ∂L
∂gµν

, (2)

and the Euler-Lagrange equation is Eµν(L) = 0.
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Lovelock’s theorem

Theorem

(Lovelock’s Theorem)
The only possible second-order Euler-Lagrange expression obtainable in a four
dimensional space from a scalar density of the form L = L(gµν) is

Eµν = α
√
−g

[

Rµν − 1

2
gµνR

]

+ λ
√
−ggµν

, (3)

where α and λ are constants, and Rµν and R are the Ricci tensor and scalar curvature,
respectively.
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Lovelock’s theorem

In D ≤ 4 dimensions the more general action leading to Einstein equations are

L = α
√
−gR−2λ

√
−g+βǫ

µνρλRαβ
µνRαβρλ+γ

√
−g

(

R2 − 4Rµ
νR

ν
µ + Rµν

ρλR
ρλ

µν

)

,

where β and γ are also constants.

The third and fourth terms in this expression do not, however, contribute to the
Euler-Lagrange equations as

Eµν
[

ǫ
αβρλRγδ

αβRγδρλ

]

= 0 (4)

Eµν
[√

−g
(

R2 − 4Rα
βR

β
α + Rαβ

ρλR
ρλ

αβ

)]

= 0, (5)

where the action of Eµν on any function X is defined as in Eq. (2). The first of
these equations is valid in any number of dimensions, and the second is valid in four
dimensions only.
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Lovelock’s theorem

Lovelock’s theorem means that to construct metric theories of gravity with field equations
that differ from those of General Relativity we must do one (or more) of the following:

Consider other fields, beyond (or rather than) the metric tensor.

Accept higher than second derivatives of the metric in the field equations.

Work in a space with dimensionality different from four.

Give up on either rank (2,0) tensor field equations, symmetry of the field equations
under exchange of indices, or divergence-free field equations.

Give up locality.
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Aims

Obtaining up to second order differential equations of motion

Generalize quintessence/ K-essence models

Obtaining field equations that are invariant under the Galilean symmetry φ → φ+ c,
∂µφ → ∂µφ+ bµ in the limit of Minkowski spacetime, with c, bµ constants.

Obtaning an effective DE equation of the state parameter can lie in the quintessence
or phantom regimes, or experience the phantom-divide crossing, without
fine-tunning!
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The DGP cubic interaction
L = �φ∂µφ∂

µ
φ (6)

This cubic interaction gives the second order e.o.m.

(�φ)2 − (∂µ∂νφ)(∂
µ
∂
ν
φ) = 0 (7)

Galilean symmetry

∂µφ → ∂µφ+ cµ (8)

δL ∝ cµ�φ(∂µφ)

= cµ∂α

[

∂αφ∂µφ− 1

2
ηαµ(∂φ)

2

]

, (9)

this is a total derivative.
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Higher order terms (Nicolis, Rattazzi, Trincherini ’09)

Requirements:
The field equations are second order.
The terms are invariant up to total derivatives under the Galilean transformation

∂µφ → ∂µφ+ cµ

Schematically:
The Galileon terms also have a shift symmetry

φ → φ+ c

The Noether theorem implies that the e.o.m is written as total derivatives

∂µj
µ = 0, jµ = −

∂L

∂(∂µφ)

In order for the e.o.m to be second order and satisfy the Galileon symmetry it is
schematically given by

F [(∂∂φ)] .
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Galileons

The most general 4-dimensional scalar-tensor theories having second-order field equations
are described by the Lagrangian [Felice & Tsujikawa, 2012]

L =
5

∑

i=2

Li , (10)

where

L2 = K (φ,X ), (11)

L3 = −G3(φ,X )�φ, (12)

L4 = G4(φ,X )R + G4,X [(�φ)2 − (∇µ∇νφ) (∇µ∇ν
φ)] , (13)

L5 = G5(φ,X )Gµν (∇µ∇ν
φ)

− 1

6
G5,X [(�φ)3 − 3(�φ) (∇µ∇νφ) (∇µ∇ν

φ) + 2(∇µ∇αφ) (∇α∇βφ) (∇β∇µφ)] .

(14)

The total action is given by

S =

∫

d4x
√
−g (L+ Lm) , (15)

where g is the determinant of the metric gµν .
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Generalized Galileon cosmology

Imposing the flat Friedmann-Robertson-Walker (FRW) background metric we obtain,

2XK,X − K + 6X φ̇HG3,X − 2XG3,φ − 6H2G4 + 24H2X (G4,X + XG4,XX )

−12HX φ̇G4,φX − 6Hφ̇G4,φ + 2H3X φ̇ (5G5,X + 2XG5,XX )

−6H2X (3G5,φ + 2XG5,φX ) = −ρm , (16)

K − 2X (G3,φ + φ̈G3,X ) + 2(3H2 + 2Ḣ)G4 − 12H2XG4,X − 4HẊG4,X

−8ḢXG4,X − 8HXẊG4,XX + 2(φ̈+ 2Hφ̇)G4,φ +

+4XG4,φφ + 4X (φ̈− 2Hφ̇)G4,φX

−2X (2H3φ̇+ 2HḢφ̇+ 3H2φ̈)G5,X − 4H2X 2φ̈G5,XX + 4HX (Ẋ − HX )G5,φX

+2[2(ḢX + HẊ ) + 3H2X ]G5,φ + 4HX φ̇G5,φφ = −pm , (17)
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Conservation equations

Variation of (15) with respect to φ(t) provides its evolution equation

1

a3
d

dt

(

a3J
)

= Pφ , (18)

with

J ≡ φ̇K,X + 6HXG3,X − 2φ̇G3,φ + 6H2
φ̇(G4,X + 2XG4,XX )− 12HXG4,φX

+2H3X (3G5,X + 2XG5,XX )− 6H2
φ̇(G5,φ + XG5,φX ) , (19)

Pφ ≡ K,φ − 2X
(

G3,φφ + φ̈G3,φX

)

+ 6(2H2 + Ḣ)G4,φ + 6H(Ẋ + 2HX )G4,φX

−6H2XG5,φφ + 2H3X φ̇G5,φX . (20)

Finally, the evolution equation for matter takes the standard form

ρ̇m + 3H(ρm + pm) = 0 . (21)
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Our ansatzes

One class of Galileon scenarios has the above Lagrangian with the ansatzes:

K (φ,X ) = X − V (φ), G3(φ,X ) = −g(φ)X , G4(φ,X ) =
1

2

1

8πG
, G5(φ,X ) = 0, (22)

corresponding to the action

S =

∫

d4x
√
−g

[

1

16πG
R − 1

2
∂
µ
φ∂µφ− V (φ)− 1

2
g(φ)∂µ

φ∂µφ�φ+ Lm

]

. (23)

(one could straightforwardly include ansatzes with higher powers of X , such as the
covariant Galileon model [Deffayet, Esposito-Farese, & Vikman, 2009], however for
simplicity we remain to the above simple but non-trivial Galileon action).
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Ansatzes for the potential and coupling function

Concerning V (φ) the usual assumption in dynamical investigations in the literature is to
assume an exponential potential of the form

V (φ) = V0e
λVφ

, (24)

Concerning g(φ), and in order to remain general, we will consider two ansatzes, namely
the exponential one

g(φ) = g0e
λgφ, (25)

and the power-law one
g(φ) = g0φ

n
. (26)
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Gravitational field equations

The gravitational field equations (16) and (17) become

H2 =
8πG

3

(

ρDE + ρm

)

, (27)

Ḣ = −4πG
(

ρDE + pDE + ρm + pm
)

, (28)

where we have defined the effective dark energy sector with energy density and pressure
respectively:

ρDE =
φ̇2

2

(

1− 6gHφ̇+ g,φφ̇
2
)

+ V (φ) , (29)

pDE =
φ̇2

2

(

1 + 2g φ̈+ g,φφ̇
2
)

− V (φ). (30)

The scalar field equation (18) becomes

φ̈+ 3Hφ̇+ 2g,φφ̇
2
φ̈+

1

2
g,φφφ̇

4 − 3gḢφ̇
2 − 6gHφ̇φ̈− 9gH2

φ̇
2 + V,φ = 0 , (31)
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Dark energy equation-of-state parameter

We can define the dark energy equation-of-state parameter as

wDE ≡ pDE

ρDE

=

φ̇2

2

(

1 + 2g φ̈+ g,φφ̇
2
)

− V (φ)

φ̇2

2

(

1− 6gHφ̇+ g,φφ̇2
)

+ V (φ)
. (32)

One can clearly see that in this scenario, according to the form of g(φ), wDE can be
quintessence-like, phantom-like, or experience the phantom divide crossing during the
evolution!
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Avoidance of instabilities

For the above scenario to be free of ghosts and Laplacian instabilities, and thus
cosmologically viable, two conditions must be satisfied
[De Felice & Tsujikawa, 2010, Felice & Tsujikawa, 2012, Appleby & Linder, 2012]. In
our case,

c2S ≡ 6w1H − 3w 2
1 − 6ẇ1 − 6ρm

4w2 + 9w 2
1

≥ 0, (33)

for the avoidance of Laplacian instabilities associated with the scalar field propagation
speed, and

QS ≡ (4w2 + 9w 2
1 )

3w 2
1

> 0 , (34)

for the absence of ghosts, where in our case

w1 ≡ g φ̇3 + 2H, (35)

w2 ≡ 3φ̇2

[

1

2
+ g,φφ̇

2 − 6Hg φ̇

]

− 9H2
. (36)

Finally, we stress that according to (32) and (33),(34) the phantom phase can be free of
instabilities and thus cosmologically viable, as it was already shown for Galileon
cosmology [Felice & Tsujikawa, 2012].
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Dynamical systems analysis

In the scenario at hand we introduce the auxiliary variables:

x =
κφ̇√
6H

, y =
κ
√

V (φ)√
3H

, z = g(φ)Hφ̇, v =
1

φ
. (37)

Using these variables the Friedmann equation (27) becomes

(1− 6z)x2 + y 2 +

√
6zg ′(φ)x3

g(φ)
+

ρm

3H2
= 1. (38)

Moreover, using (38) and (29) we can write the matter and dark energy density
parameters as:

Ωm ≡ ρm

3H2
= 1−

[

(1− 6z)x2 + y 2 +

√
6zg ′(φ)x3

g(φ)

]

ΩDE ≡ κ2ρDE

3H2
= (1− 6z)x2 + y 2 +

√
6zg ′(φ)x3

g(φ)
. (39)

Note that in the limit g(φ) → 0 the above quantities are well-defined, and they coincide
with the usual quintessence ones [Copeland, Liddle & Wands, 1998].
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Cosmological observables

Dark-energy equation-of-state parameter (32):

wDE =
6z2λ2

gx
4 + 3

√
6(1− 2z)zλgx

3 + [3z(3z − 4) + 1]x2 −
√
6y2z(2λg + λV )x + y2(6z − 1)

[

zx2
(√

6xλg − 6
)

+ x2 + y2
] [

z
(

9zx2 + 2
√
6λgx − 6

)

+ 1
] .

(40)

and the deceleration parameter:

q ≡ −1− Ḣ

H2
=

1

2
+

3

2
wtot

=
{

2z
(

9zx2 + 2
√
6λgx − 6

)

+ 2
}−1 {

9
√
6(1− 2z)zλgx

3 + [36(z − 1)z + 3]x2

+18z2λ2
gx

4 +
√
6z

[(

2− 6y 2
)

λg − 3y 2
λV

]

x +
(

3y 2 − 1
)

(6z − 1)
}

. (41)

Finally, the two instability-related quantities:

c2S =

{

x
[

z
(

9zx2 + 2
√
6λgx − 6

)

+ 1
]2
}−1

{

3
√
6z3λgx

4 + 3z2x3
(

2λ2
g − 6z + 5

)

−27z4x5 + 2
√
6(1− 4z)zλgx

2 +
{

z
[

3z
(

5− 3y 2
)

− 4
]

+ 1
}

x +
√
6y 2zλV

}

(42)

and

QS =
3x2

[

z
(

9zx2 + 2
√
6λgx − 6

)

+ 1
]

(3zx2 + 1)2
. (43)
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Late-time attractors for Scenario 1: Exponential potential and exponential
coupling function.

Cr. P. xc yc zc Exist for

C −λV√
6

√

1− λV
2

6
0 0 < λ2

V ≤ 6

C0 0 1 0 λV = 0

D −
√
6

2λV

√
6

2λV
0 λ2

V ≥ 3

Cr. P. ΩDE wDE q c2S QS

C 1 −1 +
λ2
V

3
−1 +

λ2
V

2
1

λ2
V

2

C0 1 −1 −1 1 0

D 3
λ2
V

0 1
2

1 9
2λ2

V
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Stability conditions

Cr. P. Exist for Stability

stable node for −
√
3 < λV < 0,λg < −λV

C 0 < λ2
V

≤ 6 stable node for 0 < λV <
√
3,λg > −λV

saddle point otherwise

C0 λV = 0 stable node

stable node for −
√

24
7

≤ λV < −
√
3,λg < −λV

D λ2
V ≥ 3 stable node for

√
3 < λV <

√

24
7
,λg > −λV

stable spiral for λV < −
√

24
7
,λg < −λV

stable spiral for λV >

√

24
7
,λg > −λV
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Trajectories in the yr -xr plane of the Poincaré phase space for the Scenario 1, that is for
exponential potential and exponential coupling function. We use λV = 1 and λg arbitrary
(for the numerics we choose λg = 1 but different λg ’s correspond to the same projection
on yr -xr plane). In this projection the dark-energy dominated, accelerating,
quintessence-like solution C is a stable solution, O1 is saddle point, and A± are unstable.

G. Leon (PUCV) Generalized Galileon cosmology COSMOCONCE 2013 22 / 37



Trajectories in the yr -xr plane of the Poincaré phase space for the Scenario 1, that is for
exponential potential and exponential coupling function. We use λV = 2 and λg arbitrary
(for the numerics we choose λg = 1 but different λg ’s correspond to the same projection
on yr -xr plane). In this projection the non-accelerating, dust-like (wDE = 0) solution D is
a stable spiral, C and O1 are saddle points, and A± are unstable.
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Trajectories in the yr -xr plane of the Poincaré phase space for the Scenario 1, that is for
exponential potential and exponential coupling function, for the specific case λV = 0 and
λg arbitrary (for the numerics we choose λg = 1 but different λg ’s correspond to the
same projection on yr -xr plane). In this projection the de Sitter solution C0 is a stable
node, O1 is saddle point, and A± are unstable.
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Physical discussion for Scenario 1: Exponential potential and exponential
coupling function.

Points A± exist always, that is for every values of the scenario parameters
λV ,λg ,V0,g0, they are unstable or saddle, and thus they cannot be the late-time
state of the universe. They correspond to a non-accelerating, dark-energy dominated
universe, with a stiff dark-energy equation-of-state parameter equal to 1. Finally, the
instability-related quantities cS and QS do satisfy the corresponding conditions
(33),(34), namely cS ≥ 0 and QS > 0, and thus these solutions are free of
instabilities. Both of them exist in standard quintessence
[Copeland, Liddle & Wands, 1998].

Point O1 is a saddle one and thus it cannot attract the universe at late times. It
corresponds to a non-accelerating, dark-matter dominated universe, with zero total
equation-of-state parameter. The instability-related quantities cS and QS satisfy
(33),(34), and thus this solution is free of instabilities. This point exists in standard
quintessence too [Copeland, Liddle & Wands, 1998].
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Point C exists for 0 < λ2
V < 6 and it is a stable one in the region of the parameter

space given by 0 < λV <
√
3, λg > −λV or −

√
3 < λV < 0, λg < −λV , and thus it

can attract the universe at late times. It corresponds to a dark-energy dominated
universe, with a dark-energy equation-of-state parameter lying in the quintessence
regime, which can be accelerating or not according to the λV -value. Additionally,
this solution is free of instabilities. This point exists in standard quintessence
[Copeland, Liddle & Wands, 1998]. It is quite important, since it is both stable and
possesses wDE and q compatible with observations.

Furthermore, we mention that in the specific case where λV = 0, that is in the case
of constant or zero usual potential, there exist the critical point C0, and it is always
stable. It corresponds to the de Sitter solution, where the universe is accelerating
and dark-energy dominated, with the dark-energy behaving like a cosmological
constant (wDE = −1), and it is free of instabilities. This point exists in standard
quintessence [Copeland, Liddle & Wands, 1998]. It is quite important, since it is
both stable and possesses wDE and q compatible with observations.
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Since in many Galileon works the authors do not consider a potential, point C0 just
gives the late-time state of the universe in these cases
[Felice & Tsujikawa, 2012, Appleby & Linder, 2012].

Point D exists for λ2
V ≥ 3 and in this case it is always stable, that is it can be the

late-time state of the universe, and it is free of instabilities. It has the advantage
that the dark-energy density parameter is in the interval 0 < ΩDE < 1, that is it can
alleviate the coincidence problem since dark energy and dark matter density
parameters can be of the same order. However, it has the disadvantage that it is not
accelerating and wDE = 0, which are not favored by observations. This point exists
in standard quintessence [Copeland, Liddle & Wands, 1998] too.
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Apart from the above points that exist also in standard quintessence, the scenario at
hand possesses two additional critical points, namely B±. They correspond to
dark-energy domination, with a dark-energy equation-of-state parameter lying in the
quintessence regime, where the universe is non-accelerating (q > 0), and they are
free of instabilities. However, these points are not stable and thus they cannot
attract the universe at late times.

Finally, the present scenario possesses two critical point at infinity, namely K±.
They correspond to a dark-matter dominated, non-accelerating universe, with
arbitrary wDE but with a zero total equation-of-state parameter wtot , which are also
free of instabilities. They are always unstable and therefore they cannot be the
late-time state of the universe.
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Results for scenario 1: exponential potential and exponential coupling
function.

Galileons (simple or generalized) may survive at late-time cosmology or may be
completely disappeared by the dynamics, depending on the model parameters:

From the above analysis we observe that at the stable critical points, C and D, we

have φ̇ → 0, φ → −sign(λV )∞ and thus for λVλg > 0 we obtain g(φ) → 0 while for
λVλg < 0 we obtain g(φ) → ∞ (for λV = 0 g(φ) can be zero, finite, or infinity).
Similarly, for C0 we see that for λg > 0 we obtain g(φ) → 0 while for λg < 0 we
obtain g(φ) → ∞.
In all cases, if λg = 0 then obviously g(φ) = const.

Galileon cosmology possesses the same stable late-time solutions with standard
quintessence [Copeland, Liddle & Wands, 1998].

The corresponding observables of these solutions do not depend on the Galileon
terms, but only on the usual terms and especially on the standard scalar potential
(even the instability-related quantities do not depend on the Galileon terms either).
This is a main result of the present work.
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Late-time attractors for Scenario 2: Exponential potential and powerlaw
coupling function.

Cr. P. xc yc zc vc Exist for Stability

stable node for
λ2
V < 3

F −λV

6

√

1− λ2
V

6
0 0 0 < λ2

V
≤ 6 saddle point for

3 < λ2
V < 6

F0 0 1 0 0 λV = 0 stable
(not asymptotically for n 6= 0)

stable
(asymptotically for n = 0)

stable node for
3 < λ2

V < 24
7

G −
√
6

2λV

√
6

2λV
0 0 λ2

V > 3 stable spiral for
24
7
< λ2

V
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Projection of orbits on the xr -yr -zr space of the Poincaré phase space for the Scenario 2,
that is for exponential potential and power-law coupling function, for the specific case
λV = 0 and n arbitrary (for the numerics we choose n = 1 but different n’s correspond to
the same projection). In this projection the de Sitter solution F0 is the attractor, whereas
L− and E± are unstable and O2 is a saddle point.
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Physical interpretation for scenario 2: Exponential potential and power-law
coupling function

E± exist for every value of the parameters λV ,n,V0,g0, they are saddle points, and
thus they cannot be the late-time state of the universe. They correspond to a
non-accelerating, dark-energy dominated universe, with a stiff dark-energy
equation-of-state parameter equal to 1, and they are free of instabilities. Both of
them exist in standard quintessence [Copeland, Liddle & Wands, 1998].

Point O2 is a saddle one and thus it cannot attract the universe at late times. It
corresponds to a non-accelerating, dark-matter dominated universe, with zero total
equation-of-state parameter, and it is free of instabilities. This point exists in
standard quintessence too [Copeland, Liddle & Wands, 1998].
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Point F exists for 0 < λ2
V < 6 and it is a stable one for λ2

V < 3 and thus it can be
the late-time state of the universe. It corresponds to a dark-energy dominated
universe, with a dark-energy equation-of-state parameter in the quintessence regime,
which can be accelerating or not according to the λV -value. Additionally, this
solution is free of instabilities. This point is quite important, since it is both stable
and possesses wDE and q compatible with observations. It exists in standard
quintessence [Copeland, Liddle & Wands, 1998] too.

F0, which is obtained only in the case where λV = 0, that is in the case of constant
or zero usual potential, and it is always stable. It corresponds to the de Sitter
solution, where the universe is accelerating and dark-energy dominated, with the
dark-energy behaving like a cosmological constant (wDE = −1), and it is free of
instabilities. Furthermore, since in many Galileon works the standard potential is not
considered, point F0 is straightforwardly the corresponding late-time state of the
universe in these cases.
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Point G exists for λ2
V ≥ 3 and in this case it is always stable, that is it can attract

the universe at late times, and it is free of instabilities. It has the advantage that the
dark-energy density parameter lies in the interval 0 < ΩDE < 1, that is it can
alleviate the coincidence problem, but it has the disadvantage that it is not
accelerating and possesses wDE = 0, which are not favored by observations. This
point exists in standard quintessence [Copeland, Liddle & Wands, 1998] too.

Finally, the scenario at hand possesses the critical point at infinity L± and M±.
They correspond to a dark-matter dominated, non-accelerating universe, with a zero
total equation-of-state parameter wtot , which are also free of instabilities. M± are
saddle points whereas L± are unstable, and thus they cannot be the late-time state
of the universe.
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Results for scenario 2: exponential potential and powerlaw- coupling
function.

Galileons (simple or generalized) may survive at late-time cosmology or may be
completely disappeared by the dynamics, depending on the model parameters:

at the stable critical points, F and G , we have φ̇ → 0, φ → −sign(λV )∞ and thus for
n < 0 we obtain g(φ) → 0 while for n > 0 we obtain g(φ) → ∞.
Similarly, for F0 we see that for n < 0 we obtain g(φ) → 0 while for n > 0 we obtain
g(φ) → ∞.
In all cases, if n = 0 then obviously g(φ) = const.

Similarly to the previous subsection, firstly we observe that this scenario possesses
the same stable late-time solutions with standard quintessence
[Copeland, Liddle & Wands, 1998].

The corresponding observables of these solutions do not depend on the Galileon
terms, but only on the usual terms and especially on the standard scalar potential.

Even the instability-related quantities do not depend on the Galileon terms either.
These are the main results of the present work.
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